compas-prm-correctness-full-meta8B

This model is a fine-tuned version of zarahall/bias-prm-v3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7259

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • total_eval_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.15
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
0.9307 0.1352 100 0.8397
0.8305 0.2704 200 0.8036
0.7258 0.4055 300 0.7699
0.7102 0.5407 400 0.7480
0.7924 0.6759 500 0.7370
0.7386 0.8111 600 0.7322
0.7283 0.9463 700 0.7294
0.706 1.0814 800 0.7278
0.7382 1.2166 900 0.7272
0.7837 1.3518 1000 0.7263
0.8122 1.4870 1100 0.7263
0.7265 1.6222 1200 0.7260
0.7012 1.7574 1300 0.7258
0.7828 1.8925 1400 0.7259

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.1.2+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
15
Safetensors
Model size
1.24B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for zarahall/compas-prm-correctness-full-meta8B

Finetuned
(2)
this model