30_05_2025_Test4_LazyMergekit_gemma-3-12B
30_05_2025_Test4_LazyMergekit_gemma-3-12B is a merge of the following models using LazyMergekit:
- zelk12/MT-Gen1-gemma-3-12B
- soob3123/amoral-gemma3-12B-v2
- zelk12/MT1-gemma-3-12B
- IlyaGusev/saiga_gemma3_12b
- TheDrummer/Fallen-Gemma3-12B-v1
🧩 Configuration
models:
- model: zelk12/MT-gemma-3-12B
#no parameters necessary for base model
- model: zelk12/MT-Gen1-gemma-3-12B
parameters:
density: 0.8
weight: 0.5
- model: soob3123/amoral-gemma3-12B-v2
parameters:
density: 0.66
weight: 0.5
- model: zelk12/MT1-gemma-3-12B
parameters:
density: 0.57
weight: 0.5
- model: IlyaGusev/saiga_gemma3_12b
parameters:
density: 0.563
weight: 0.5
- model: TheDrummer/Fallen-Gemma3-12B-v1
parameters:
density: 0.5
weight: 0.5
merge_method: dare_ties
base_model: zelk12/MT-gemma-3-12B
parameters:
normalize: true
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "zelk12/30_05_2025_Test4_LazyMergekit_gemma-3-12B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for zelk12/30_05_2025_Test4_LazyMergekit_gemma-3-12B
Merge model
this model