e500_lr2e-05 / README.md
zemaia's picture
End of training
1a62a91 verified
|
raw
history blame
4.22 kB
metadata
library_name: transformers
base_model: adalbertojunior/distilbert-portuguese-cased
tags:
  - generated_from_trainer
model-index:
  - name: e500_lr2e-05
    results: []

e500_lr2e-05

This model is a fine-tuned version of adalbertojunior/distilbert-portuguese-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3316

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 200
  • eval_batch_size: 400
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
6.8051 1.5385 100 5.4555
5.0899 3.0769 200 4.5164
4.3939 4.6154 300 3.9739
3.948 6.1538 400 3.6053
3.6364 7.6923 500 3.3412
3.391 9.2308 600 3.1273
3.2013 10.7692 700 2.9847
3.0531 12.3077 800 2.7862
2.9261 13.8462 900 2.7109
2.8132 15.3846 1000 2.5933
2.698 16.9231 1100 2.5080
2.614 18.4615 1200 2.4453
2.5423 20.0 1300 2.3267
2.4675 21.5385 1400 2.2761
2.4105 23.0769 1500 2.2385
2.3405 24.6154 1600 2.1717
2.2862 26.1538 1700 2.1134
2.2324 27.6923 1800 2.0816
2.1954 29.2308 1900 2.0319
2.145 30.7692 2000 1.9917
2.1001 32.3077 2100 1.9738
2.0688 33.8462 2200 1.9215
2.024 35.3846 2300 1.8910
1.99 36.9231 2400 1.8697
1.9524 38.4615 2500 1.8273
1.9288 40.0 2600 1.7972
1.8957 41.5385 2700 1.7696
1.8713 43.0769 2800 1.7486
1.8427 44.6154 2900 1.7461
1.8155 46.1538 3000 1.6993
1.7914 47.6923 3100 1.6781
1.766 49.2308 3200 1.6483
1.738 50.7692 3300 1.6227
1.7167 52.3077 3400 1.5883
1.6781 53.8462 3500 1.5695
1.658 55.3846 3600 1.5469
1.6276 56.9231 3700 1.5451
1.6131 58.4615 3800 1.5046
1.5916 60.0 3900 1.4997
1.5746 61.5385 4000 1.4709
1.5638 63.0769 4100 1.4615
1.5395 64.6154 4200 1.4542
1.5291 66.1538 4300 1.4323
1.5115 67.6923 4400 1.4036
1.4885 69.2308 4500 1.3822
1.4706 70.7692 4600 1.3732
1.4611 72.3077 4700 1.3625
1.4393 73.8462 4800 1.3662
1.4321 75.3846 4900 1.3556
1.4108 76.9231 5000 1.3566
1.4054 78.4615 5100 1.2953
1.3863 80.0 5200 1.3333
1.3674 81.5385 5300 1.3210
1.3578 83.0769 5400 1.3029

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1