YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
VLM
Codebase of VLM projects
Evaluation
Currently, the codebase supports evaluation on several benchmarks, including HallusionBench, ai2d, docvqa, mmbench, mme, mmstar, ocrvqa, pope, seed_bench, sqa, textvqa, and vqav2. You can modify the configuration in the config file to enable evaluation.
Config
Please refer to llava_test.py or omg_llava_test.py.
Firstly, you need load the evaluation benchmarks from here. And put them to
./data/
.Copy the train config of your model and delete the custom_hooks.
# remove custom_hooks
custom_hooks = []
- Implement the preparing_for_generation and predict_forward for your model. Please refer to llava or omg_llava.
preparing_for_generation set the generation setting for the model such as template. predict_forward is the predict forward function of your method, the input is items from the test dataset (such as pixel_values and text_prompts), the output is the response dict.
- Add these items in your config.
test_dataset = [
dict(
type=MultipleChoiceDataset,
data_file='./data/eval/mmbench/MMBench_DEV_EN.tsv',
image_processor=image_processor,
pad_image_to_square=True,
),
dict(
type=MultipleChoiceDataset,
data_file='./data/eval/mmbench/MMBench_TEST_EN.tsv',
image_processor=image_processor,
pad_image_to_square=True,
),
dict(
type=MMEDataset,
data_file='./data/eval/mme/MME.tsv',
image_processor=image_processor,
pad_image_to_square=True,
),
dict(
type=MultipleChoiceDataset,
data_file='./data/eval/seed_bench/SEEDBench_IMG.tsv',
image_processor=image_processor,
pad_image_to_square=True,
),
dict(
type=MultipleChoiceDataset,
data_file='./data/eval/sqa/ScienceQA_VAL.tsv',
image_processor=image_processor,
pad_image_to_square=True,
),
dict(
type=MultipleChoiceDataset,
data_file='./data/eval/sqa/ScienceQA_TEST.tsv',
image_processor=image_processor,
pad_image_to_square=True,
),
dict(
type=MultipleChoiceDataset,
data_file='./data/eval/ai2d/AI2D_TEST.tsv',
image_processor=image_processor,
pad_image_to_square=True,
),
dict(
type=MultipleChoiceDataset,
data_file='./data/eval/mmstar/MMStar.tsv',
image_processor=image_processor,
pad_image_to_square=True,
),
dict(
type=HallusionDataset,
data_file='./data/eval/HallusionBench/HallusionBench.tsv',
image_processor=image_processor,
pad_image_to_square=True,
),
dict(
type=POPEDataset,
data_file=[
'./data/eval/pope/coco_pope_adversarial.json',
'./data/eval/pope/coco_pope_popular.json',
'./data/eval/pope/coco_pope_random.json',
],
coco_val_path='./data/eval/val2014/',
image_processor=image_processor,
pad_image_to_square=True,
),
]
test_dataloader = dict(
batch_size=1,
num_workers=0,
drop_last=False,
sampler=dict(type=DefaultSampler, shuffle=False),
dataset=dict(type=ConcatDataset, datasets=test_dataset),
)
test_evaluator = dict()
test_cfg = dict(type=TestLoop, select_metric='first')
- Perform test.
# example
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7,8 PYTHONPATH=. bash tools/dist.sh test projects/omg_llava/configs/test/omg_llava_7b_finetune_8gpus.py 8 --checkpoint ./pretrained/omg_llava/omg_llava_fintune_8gpus.pth
model | MMbench-DEV-EN | SEEDBench | MME | ScienceQA_VAL | ScienceQA_TEST | AI2D | MMStar |
---|---|---|---|---|---|---|---|
llava-vicuna-7b | 68.5 | 65.9 | 1689 | 67.6 | 68.9 | 56.7 | 34.8 |
omg-llava-internlm2-7b | 45.7 | 54.2 | 1255 | 53.5 | 55.6 | 42.3 | 34.8 |
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support