YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

VLM

Codebase of VLM projects

Evaluation

Currently, the codebase supports evaluation on several benchmarks, including HallusionBench, ai2d, docvqa, mmbench, mme, mmstar, ocrvqa, pope, seed_bench, sqa, textvqa, and vqav2. You can modify the configuration in the config file to enable evaluation.

Config

Please refer to llava_test.py or omg_llava_test.py.

  1. Firstly, you need load the evaluation benchmarks from here. And put them to ./data/.

  2. Copy the train config of your model and delete the custom_hooks.

# remove custom_hooks
custom_hooks = []
  1. Implement the preparing_for_generation and predict_forward for your model. Please refer to llava or omg_llava.

preparing_for_generation set the generation setting for the model such as template. predict_forward is the predict forward function of your method, the input is items from the test dataset (such as pixel_values and text_prompts), the output is the response dict.

  1. Add these items in your config.
test_dataset = [
    dict(
        type=MultipleChoiceDataset,
        data_file='./data/eval/mmbench/MMBench_DEV_EN.tsv',
        image_processor=image_processor,
        pad_image_to_square=True,
    ),
    dict(
        type=MultipleChoiceDataset,
        data_file='./data/eval/mmbench/MMBench_TEST_EN.tsv',
        image_processor=image_processor,
        pad_image_to_square=True,
    ),
    dict(
        type=MMEDataset,
        data_file='./data/eval/mme/MME.tsv',
        image_processor=image_processor,
        pad_image_to_square=True,
    ),
    dict(
        type=MultipleChoiceDataset,
        data_file='./data/eval/seed_bench/SEEDBench_IMG.tsv',
        image_processor=image_processor,
        pad_image_to_square=True,
    ),
    dict(
        type=MultipleChoiceDataset,
        data_file='./data/eval/sqa/ScienceQA_VAL.tsv',
        image_processor=image_processor,
        pad_image_to_square=True,
    ),
    dict(
        type=MultipleChoiceDataset,
        data_file='./data/eval/sqa/ScienceQA_TEST.tsv',
        image_processor=image_processor,
        pad_image_to_square=True,
    ),
    dict(
        type=MultipleChoiceDataset,
        data_file='./data/eval/ai2d/AI2D_TEST.tsv',
        image_processor=image_processor,
        pad_image_to_square=True,
    ),
    dict(
        type=MultipleChoiceDataset,
        data_file='./data/eval/mmstar/MMStar.tsv',
        image_processor=image_processor,
        pad_image_to_square=True,
    ),
    dict(
        type=HallusionDataset,
        data_file='./data/eval/HallusionBench/HallusionBench.tsv',
        image_processor=image_processor,
        pad_image_to_square=True,
    ),
    dict(
        type=POPEDataset,
        data_file=[
            './data/eval/pope/coco_pope_adversarial.json',
            './data/eval/pope/coco_pope_popular.json',
            './data/eval/pope/coco_pope_random.json',
        ],
        coco_val_path='./data/eval/val2014/',
        image_processor=image_processor,
        pad_image_to_square=True,
    ),
]

test_dataloader = dict(
    batch_size=1,
    num_workers=0,
    drop_last=False,
    sampler=dict(type=DefaultSampler, shuffle=False),
    dataset=dict(type=ConcatDataset, datasets=test_dataset),
)
test_evaluator = dict()
test_cfg = dict(type=TestLoop, select_metric='first')
  1. Perform test.
# example 
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7,8 PYTHONPATH=. bash tools/dist.sh test projects/omg_llava/configs/test/omg_llava_7b_finetune_8gpus.py 8 --checkpoint ./pretrained/omg_llava/omg_llava_fintune_8gpus.pth
model MMbench-DEV-EN SEEDBench MME ScienceQA_VAL ScienceQA_TEST AI2D MMStar
llava-vicuna-7b 68.5 65.9 1689 67.6 68.9 56.7 34.8
omg-llava-internlm2-7b 45.7 54.2 1255 53.5 55.6 42.3 34.8
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support