mumo-pretrain

This model was trained using MuMo (Multi-Modal Molecular) framework, as presented in the paper Structure-Aware Fusion with Progressive Injection for Multimodal Molecular Representation Learning. The official code repository is available at: https://github.com/selmiss/MuMo

Model Description

  • Model Type: MuMo Pretrained Model
  • Training Data: Molecular structures and properties
  • Framework: PyTorch + Transformers + Mamba-ssm

Usage

Loading the Model

MuMo uses a custom loading function. Here's how to load the pretrained model:

git clone https://github.com/selmiss/MuMo.git
from transformers import AutoConfig, AutoTokenizer
from model.load_model import load_model
from dataclasses import dataclass

# Load configuration and tokenizer
repo = "zihaojing/MuMo-Pretrained"
config = AutoConfig.from_pretrained(repo, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(repo)

# Set up model arguments
@dataclass
class ModelArgs:
    model_name_or_path: str = repo
    model_class: str = "MuMoFinetune"  # or "MuMoPretrain" for pretraining
    cache_dir: str = None
    model_revision: str = "main"
    use_auth_token: bool = False
    task_type: str = None  # e.g., "classification" or "regression" for finetuning

model_args = ModelArgs()

# Load the model
model = load_model(config, tokenizer=tokenizer, model_args=model_args)

Notes:

  • Use model_class="MuMoPretrain" for pretraining or inference
  • Use model_class="MuMoFinetune" for finetuning tasks
  • Set task_type to "classification" or "regression" when using MuMoFinetune
  • The model supports loading from both Hugging Face Hub (e.g., "zihaojing/MuMo-Pretrained") and local paths (e.g., "/path/to/model")

Training Details

Citation

If you use this model or the MuMo framework, please cite our paper:

@inproceedings{jing2025mumo,
  title        = {MuMo: Multimodal Molecular Representation Learning via Structural Fusion and Progressive Injection},
  author       = {Jing, Zihao and Sun, Yan and Li, Yan Yi and Janarthanan, Sugitha and Deng, Alana and Hu, Pingzhao},
  booktitle    = {Advances in Neural Information Processing Systems (NeurIPS)},
  year         = {2025}
}
Downloads last month
23
Safetensors
Model size
0.5B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support