File size: 8,486 Bytes
933d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import datasets
from datasets import load_dataset
import json
from tqdm import tqdm
fw = open("/apdcephfs_gy2/share_303094202/bazzfeng/data/math_sft_bigbig.jsonl", "w+")
fw2 = open("/apdcephfs_gy2/share_303094202/bazzfeng/data/science_sft_bigbig.jsonl", "w+")
udict = {}

mydata = load_dataset('TIGER-Lab/WebInstruct-verified')
for item in mydata['train']:
    new_d =  {"loss_mask": [0,1], "topic": "数学", "is_business": 0} if item['category']=='Mathematics' else {"loss_mask": [0,1], "topic": "科学", "is_business": 0}
    answer = item['answer']
    new_d['ref_answer'] = answer
    new_d['messages'] = [{"content": item['question'], "role": "user"}, {"content": answer, "role": "assistant"}]
    if new_d['messages'][0]['content'][:50] in udict:
        continue
    else:
        if item['category']=='Mathematics':
            fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")
        else:
            fw2.write(json.dumps(new_d, ensure_ascii=False)+"\n") 
for item in mydata['test']:
    new_d =  {"loss_mask": [0,1], "topic": "数学", "is_business": 0} if item['category']=='Mathematics' else {"loss_mask": [0,1], "topic": "科学", "is_business": 0}
    answer = item['answer']
    new_d['ref_answer'] = answer
    new_d['messages'] = [{"content": item['question'], "role": "user"}, {"content": answer, "role": "assistant"}]
    if new_d['messages'][0]['content'][:50] in udict:
        continue
    else:
        if item['category']=='Mathematics':
            fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")
        else:
            fw2.write(json.dumps(new_d, ensure_ascii=False)+"\n")

mydata = load_dataset('Skywork/Skywork-OR1-RL-Data')

#fw = open("/apdcephfs_gy2/share_303094202/bazzfeng/data/skywork_deepmath.jsonl", "w+")
for item in mydata['math']:
    new_d =  {"loss_mask": [0,1], "topic": "数学", "is_business": 0}
    answer = item['reward_model']['ground_truth']
    new_d['ref_answer'] = answer
    new_d['messages'] = item['prompt']
    new_d['messages'].append({"content": answer, "role": "assistant"})
    if new_d['messages'][0]['content'][:50] in udict:
        continue
    else:
        udict[new_d['messages'][0]['content'][:50]] = 1
        fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")
    #break
mydata = load_dataset('zwhe99/DeepMath-103K')
for item in mydata['train']:
    new_d =  {"loss_mask": [0,1], "topic": "数学", "is_business": 0}
    answer = item['final_answer']
    new_d['ref_answer'] = answer
    new_d['messages'] = [{"content": item["question"], "role": "user"}, {"content": answer, "role": "assistant"}]
    if new_d['messages'][0]['content'][:50] in udict:
        continue
    else:
        udict[new_d['messages'][0]['content'][:50]] = 1
        fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")
    #break



lans = ['ar', 'bn', 'de', 'en', 'es', 'fr', 'id', 'it', 'ja', 'ko', 'ms', 'pt', 'ru', 'sw', 'te', 'th', 'vi', 'zh']
for lan in lans:
    mydata = load_dataset('Qwen/PolyMath', lan)
    for item in mydata['top']:
        answer = item['answer']
        new_d = {"loss_mask": [0,1], "topic": "数学", "is_business": 0}
        new_d['ref_answer'] = answer
        new_d['messages'] = [{"content": item["question"], "role": "user"}, {"content": answer, "role": "assistant"}]
        if new_d['messages'][0]['content'][:50] in udict:
            continue
        else:
            udict[new_d['messages'][0]['content'][:50]] = 1
            fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")
    for item in mydata['high']:
        answer = item['answer']
        new_d = {"loss_mask": [0,1], "topic": "数学", "is_business": 0}
        new_d['ref_answer'] = answer
        new_d['messages'] = [{"content": item["question"], "role": "user"}, {"content": answer, "role": "assistant"}]
        if new_d['messages'][0]['content'][:50] in udict:
            continue
        else:
            udict[new_d['messages'][0]['content'][:50]] = 1
            fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")
    for item in mydata['medium']:
        answer = item['answer']
        new_d = {"loss_mask": [0,1], "topic": "数学", "is_business": 0}
        new_d['ref_answer'] = answer
        new_d['messages'] = [{"content": item["question"], "role": "user"}, {"content": answer, "role": "assistant"}]
        if new_d['messages'][0]['content'][:50] in udict:
            continue
        else:
            udict[new_d['messages'][0]['content'][:50]] = 1
            fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")
    for item in mydata['low']:
        answer = item['answer']
        new_d = {"loss_mask": [0,1], "topic": "数学", "is_business": 0}
        new_d['ref_answer'] = answer
        new_d['messages'] = [{"content": item["question"], "role": "user"}, {"content": answer, "role": "assistant"}]
        if new_d['messages'][0]['content'][:50] in udict:
            continue
        else:
            udict[new_d['messages'][0]['content'][:50]] = 1
            fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")


mydata = load_dataset('nvidia/OpenMathReasoning')
for item in tqdm(mydata['cot']):
    answer = item['generated_solution']
    new_d = {"loss_mask": [0,1], "topic": "数学", "is_business": 0}
    new_d['ref_answer'] = item['expected_answer']
    new_d['messages'] = [{"content": item["problem"], "role": "user"}, {"content": answer, "role": "assistant"}]
    if new_d['messages'][0]['content'][:50] in udict:
        continue
    else:
        udict[new_d['messages'][0]['content'][:50]] = 1
        fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")
for item in tqdm(mydata['tir']):
    answer = item['generated_solution']
    new_d = {"loss_mask": [0,1], "topic": "数学", "is_business": 0}
    new_d['ref_answer'] = item['expected_answer']
    new_d['messages'] = [{"content": item["problem"], "role": "user"}, {"content": answer, "role": "assistant"}]
    if new_d['messages'][0]['content'][:50] in udict:
        continue
    else:
        udict[new_d['messages'][0]['content'][:50]] = 1
        fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")
for item in tqdm(mydata['genselect']):
    answer = item['generated_solution']
    new_d = {"loss_mask": [0,1], "topic": "数学", "is_business": 0}
    new_d['ref_answer'] = item['expected_answer']
    new_d['messages'] = [{"content": item["problem"], "role": "user"}, {"content": answer, "role": "assistant"}]
    if new_d['messages'][0]['content'][:50] in udict:
        continue
    else:
        udict[new_d['messages'][0]['content'][:50]] = 1
        fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")


"""
mydata = load_dataset('nvidia/Nemotron-CrossThink')
for item in mydata['train_math']:
    answer = item['reward_model']['ground_truth']
    new_d = {"loss_mask": [0,1], "topic": "数学", "is_business": 0}
    new_d['ref_answer'] = answer
    new_d['messages'] = [{"content": item["meta_data"]["question"], "role": "user"}, {"content": answer, "role": "assistant"}]
    if new_d['messages'][0]['content'][:50] in udict:
        continue
    else:
        udict[new_d['messages'][0]['content'][:50]] = 1
        fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")
for item in mydata['train_qa']:
    answer = item['reward_model']['ground_truth']
    new_d = {"loss_mask": [0,1], "topic": "科学", "is_business": 0}
    new_d['ref_answer'] = answer
    new_d['messages'] = [{"content": item["meta_data"]["question"], "role": "user"}, {"content": answer, "role": "assistant"}]
    if new_d['messages'][0]['content'][:50] in udict:
        continue
    else:
        udict[new_d['messages'][0]['content'][:50]] = 1
        fw2.write(json.dumps(new_d, ensure_ascii=False)+"\n")
"""
#mydata = load_dataset('FreedomIntelligence/medical-o1-reasoning-SFT')
lans = ['en','en_mix','zh','zh_mix']
for lan in lans:
    mydata = load_dataset('FreedomIntelligence/medical-o1-reasoning-SFT', lan)
    for item in mydata['train']:
        new_d = {"loss_mask": [0,1], "topic": "科学", "is_business": 0}
        new_d['ref_answer'] = item['Response']
        new_d['messages'] = [{"content": item['Question'], "role": "user"}, {"content": item['Response'], "role": "assistant"}]
        if new_d['messages'][0]['content'][:50] in udict:
            continue
        else:
            udict[new_d['messages'][0]['content'][:50]] = 1
            fw2.write(json.dumps(new_d, ensure_ascii=False)+"\n")
        #new_d['messages'].append({"content": item['output'], "role": "assistant"})
    
#print(mydata)