make_concepts_40w / get_concept.py
zswzswzsw's picture
Upload folder using huggingface_hub
85a2888 verified
raw
history blame
2.52 kB
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
import argparse
import json
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument('--start', type=int,help='模型路径')
parser.add_argument('--end', type=int,help='模型路径')
args = parser.parse_args()
### 分片跑数据
modelpath = "/dev_data/swzhang/model/LLM-Research/Meta-Llama-3-8B-Instruct/"
# Initialize the tokenizer
tokenizer = AutoTokenizer.from_pretrained(modelpath, trust_remote_code=True)
# Input the model name or path. Can be GPTQ or AWQ models.
llm = LLM(modelpath, dtype='float16', tensor_parallel_size=1, trust_remote_code=True, enforce_eager=True)
sampling_params = SamplingParams(temperature=0.5, top_p=0.9, max_tokens=16000)
num_concepts = 5
system_prompt = "You are a pirate chatbot who always responds in pirate speak!"
with open('right_data_with_gold_shuffle.json','r',encoding='utf-8')as f:
lines = f.readlines()[args.start:args.end]
prompts = []
for line in tqdm(lines):
one_data = json.loads(line)
problem = one_data['question']
prompt = f""" As an expert in educational assessment, analyze this problem:
{problem}
Break downandidentify {num_concepts} foundational concepts being tested. List these knowledge
points that:
• Are core curriculum concepts typically taught in standard courses,
• Are precise and measurable (not vague like "understanding math"),
• Are essential building blocks needed to solve this problem,
• Represent fundamental principles rather than problem-specific techniques.
Think through your analysis step by step, then format your response as a Python code snippet
containing a list of {num_concepts} strings, where each string clearly describes one fundamental
knowledge point."""
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}]
one_prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True,tokenize=False)
prompts.append(one_prompt)
outputs = llm.generate(prompts=prompts, sampling_params=sampling_params)
concepts_data = []
for i in range(len(outputs)):
one_data = json.loads(lines[i])
output = outputs[i].outputs[0].text
one_data['concepts_output'] = output
concepts_data.append(one_data)
with open(f'get_concept_right_{args.start}_{args.end}.json','w',encoding='utf-8') as f:
for one in concepts_data:
f.write(json.dumps(one,ensure_ascii=False)+"\n")