zuazo's picture
End of training
6da35ab verified
metadata
library_name: transformers
language:
  - eu
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - common_voice_21_0_eu
metrics:
  - wer
model-index:
  - name: Whisper Large-V2 Basque
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_21_0_eu
          type: common_voice_21_0_eu
          config: default
          split: test
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 8.682307652291525

Whisper Large-V2 Basque

This model is a fine-tuned version of openai/whisper-large-v2 on the common_voice_21_0_eu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2048
  • Wer: 8.6823

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3.75e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 100000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0086 11.1112 5000 0.2048 8.6823
0.0049 22.2225 10000 0.2296 9.1852
0.0026 33.3337 15000 0.2459 9.0196
0.004 44.4449 20000 0.2476 9.1453
0.0029 55.5562 25000 0.2631 9.7765
0.0017 66.6674 30000 0.2687 9.0057

Framework versions

  • Transformers 4.52.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1