|
--- |
|
language: en |
|
license: mit |
|
tags: |
|
- fasttext |
|
- tajik |
|
- word-embeddings |
|
- nlp |
|
--- |
|
|
|
# Tajik FastText Word Embedding Model |
|
|
|
This repository contains a pretrained **FastText** model for the **Tajik language**, trained on a large corpus of Tajik texts. The model supports **subword information**, allowing it to generate embeddings even for rare or unseen (OOV) words. |
|
|
|
The model is suitable for use in various NLP tasks such as: |
|
- Semantic analysis |
|
- Text classification |
|
- Machine translation |
|
- Synonym detection and thesaurus building |
|
- Enhancing other models through embedding initialization |
|
|
|
Licensed under the [MIT License](LICENSE), which allows free usage in both research and commercial applications. |
|
|
|
--- |
|
|
|
## 📊 Model Overview |
|
|
|
| Parameter | Value | |
|
|------------------|----------------------------| |
|
| Model Type | FastText (with subwords) | |
|
| Vector Size | 300 | |
|
| Vocabulary Size | 145,232 | |
|
| OOV Support | Yes | |
|
| Context Window | 5 | |
|
| Min Word Count | ≥ 5 | |
|
|
|
--- |
|
|
|
## 📚 Training Corpus |
|
|
|
### Books (Total: 99) |
|
- Programming: 6 |
|
- History: 4 |
|
- Religion: 12 |
|
- Scientific: 3 |
|
- Children's literature: 6 |
|
- Prose: 19 |
|
- Poetry: 21 |
|
- Textbooks: 28 |
|
|
|
### Articles (Total: 134,497) |
|
- Asia-Plus: 20,471 |
|
- Khovar: 21,557 |
|
- Ovozi Tojik: 7,495 |
|
- Farazh: 4,679 |
|
- Wikipedia: 80,295 |
|
|
|
### Total Corpus Statistics |
|
- **Documents**: 134,596 |
|
- **Tokens**: 33,535,383 |
|
- **Unique Lemmas**: 649,308 |
|
|
|
--- |
|
|
|
## 🧪 Model Comparison with Meta FastText |
|
|
|
We evaluated our model against Meta’s pretrained FastText using semantic similarity and Spearman correlation: |
|
|
|
| Model | Spearman Correlation | OOV Support | |
|
|------------------|----------------------|-------------| |
|
| FastText (Meta) | **0.703** | Yes | |
|
| **FastText (ours)** | **0.622** | **Yes** | |
|
|
|
While Meta FastText achieves better overall performance, our model demonstrates strong results on Tajik-specific morphology and semantics. |
|
|
|
--- |
|
|
|
## 🔍 Example Similar Words |
|
|
|
| Word | Nearest Neighbors (FastText) | |
|
|-----------|-------------------------------| |
|
| кӯдак | кӯдаку(0.82), хурдкӯдак(0.81), кӯдакам(0.81), кӯдакат(0.81), кӯдаке(0.81) | |
|
| муаллим | муаллиме(0.90), муаллимат(0.89), муаллимин(0.89), муаллиму(0.88), муаллима(0.88) | |
|
| об | оби(0.79), обро(0.74), обмӯрии(0.70), обшустаи(0.68), обшуста(0.66) | |
|
| мард | марда(0.87), мардхӯ(0.85), мардвор(0.85), мардро(0.83), зан(0.82) | |
|
| деҳа | деҳайи(0.83), деҳаю(0.80), деҳавз(0.78), деҳакӣ(0.76), деҳодеҳ(0.74) | |
|
| китоб | китобӣ(0.84), китобгуна(0.83), китобча(0.81), китобсӯзӣ(0.81), китобро(0.81) | |
|
| меҳмон | меҳмонӣ(0.86), меҳмоншо(0.85), меҳмонат(0.83), меҳмонҳона(0.82), меҳмони(0.82) | |
|
| шаҳр | шаҳрӯ(0.82), шаҳрча(0.80), бушаҳр(0.79), шаҳрат(0.79), навшаҳр(0.79) | |
|
| падар | падаршӯ(0.89), падарӣ(0.84), падаршӯву(0.84), падаре(0.84), падаршон(0.83) | |
|
| модар | модаршӯ(0.86), модаршӯяш(0.83), модару(0.81), модаре(0.81), модарвор(0.80) | |
|
|
|
--- |
|
|
|
## 🧩 Handling OOV (Out-of-Vocabulary) Words |
|
|
|
FastText supports generating vectors for unknown words via subword units (n-grams). Here are some examples: |
|
|
|
| Unknown Word | Closest Matches (FastText) | |
|
|--------------|----------------------------| |
|
| кӯдакона | кӯдаконаи(0.82), кӯдаконат(0.81), кӯдаконае(0.81) | |
|
| меҳмонамон | меҳмон(0.77), меҳмонҳо(0.77), меҳмонам(0.76) | |
|
| муаллимон | муаллимони(0.89), муаллимоне(0.88), муаллимону(0.83) | |
|
| деҳоти | дарҷамоати(0.79), чамоати(0.74), ҷамоати(0.81) | |
|
| саводнок | саводнокӣ(0.88), саводнокиву(0.85), саводнокии(0.84) | |
|
|
|
--- |
|
|
|
## 📌 Features for Tajik Language |
|
|
|
Our model performs well on: |
|
- **Semantic similarity**: e.g., "мард" ↔ "зан", "китоб" ↔ "китобгуна" |
|
- **Morphological variants**: e.g., "кӯдак" → "кӯдаку", "кӯдаки" |
|
- **Rare/compound words**: thanks to subword representations like "саводнок", "деҳоти" |
|
|
|
--- |
|
|
|
## 💡 Usage Example |
|
|
|
```python |
|
from gensim.models import FastText |
|
|
|
model = FastText.load("tajik_fasttext.model") |
|
vector = model.wv["падар"] # Get vector for a word |
|
similar_words = model.wv.most_similar("модар") # Find similar words |
|
``` |
|
|
|
--- |
|
|
|
## 🗂️ Files Included |
|
|
|
| File | Description | |
|
|--------------------|----------------------------------------------| |
|
| `tajik_fasttext.model` | Gensim FastText model file | |
|
| `*.npy` files | Supporting NumPy arrays for vectors | |
|
|
|
--- |
|
|
|
## 📚 Citation |
|
|
|
If you use this model, please cite: |
|
|
|
```bibtex |
|
@misc{ArabovMK_Tajik_FastText, |
|
author = {ArabovMK}, |
|
title = {Tajik FastText Word Embeddings}, |
|
year = 2025, |
|
publisher = {Hugging Face}, |
|
url = {https://huggingface.co/ArabovMK/tajik-fasttext-model} |
|
} |
|
``` |
|
|
|
*Last updated: 2025-05-10* |
|
|