|
--- |
|
library_name: peft |
|
license: apache-2.0 |
|
base_model: mistralai/Mistral-Small-3.1-24B-Instruct-2503 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- combined_dataset.jsonl |
|
model-index: |
|
- name: combined_model-finetune |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.10.0.dev0` |
|
```yaml |
|
# =================================================================== |
|
# CONFIG: For a single, combined "Conversion & Debug" Model |
|
# Using the stable 'alpaca' format. |
|
# =================================================================== |
|
|
|
# --- Core Model Configuration (Kept as requested) --- |
|
base_model: mistralai/Mistral-Small-3.1-24B-Instruct-2503 |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
# --- Performance, Quality, and Memory Optimization --- |
|
flash_attention: true |
|
load_in_4bit: true |
|
load_in_8bit: false |
|
adapter: lora |
|
|
|
# --- Dataset Configuration (KEY CHANGE) --- |
|
# Reverted to the stable 'alpaca' type. |
|
# Axolotl will automatically look for 'instruction', 'input', 'output' fields. |
|
datasets: |
|
- path: combined_dataset.jsonl # This is your new, flattened dataset |
|
type: alpaca |
|
|
|
# --- Output Directory --- |
|
output_dir: ./combined_model-finetune |
|
|
|
# --- Training Hyperparameters --- |
|
sequence_len: 2048 |
|
micro_batch_size: 1 |
|
gradient_accumulation_steps: 4 |
|
num_epochs: 3 |
|
learning_rate: 3e-5 |
|
|
|
# --- LoRA Configuration --- |
|
lora_r: 16 |
|
lora_alpha: 32 |
|
lora_dropout: 0.15 |
|
lora_target_modules: |
|
- q_proj |
|
- v_proj |
|
- k_proj |
|
- o_proj |
|
|
|
# --- Logging, Evaluation, and Saving (Kept as requested) --- |
|
logging_steps: 2 |
|
evaluation_strategy: "steps" |
|
eval_steps: 2 |
|
save_strategy: "steps" |
|
save_steps: 9999 |
|
val_set_size: 0.05 |
|
|
|
special_tokens: |
|
bos_token: "<s>" |
|
eos_token: "</s>" |
|
unk_token: "<unk>" |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# combined_model-finetune |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503) on the combined_dataset.jsonl dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1924 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 4 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- training_steps: 21 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| No log | 0.1481 | 1 | 0.2836 | |
|
| 0.2664 | 0.2963 | 2 | 0.2538 | |
|
| 0.4832 | 0.5926 | 4 | 0.2200 | |
|
| 0.3229 | 0.8889 | 6 | 0.2090 | |
|
| 0.1517 | 1.1481 | 8 | 0.2022 | |
|
| 0.3353 | 1.4444 | 10 | 0.2009 | |
|
| 0.2418 | 1.7407 | 12 | 0.1958 | |
|
| 0.0811 | 2.0 | 14 | 0.1942 | |
|
| 0.0496 | 2.2963 | 16 | 0.1933 | |
|
| 0.1906 | 2.5926 | 18 | 0.1927 | |
|
| 0.3171 | 2.8889 | 20 | 0.1924 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.15.2 |
|
- Transformers 4.52.3 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.6.0 |
|
- Tokenizers 0.21.1 |