luganda-ner-bert-v8 / README.md
Beijuka's picture
End of training
b517725 verified
metadata
library_name: transformers
language:
  - lg
license: apache-2.0
base_model: google-bert/bert-base-multilingual-cased
tags:
  - named-entity-recognition
  - luganda
  - african-languages
  - pii-detection
  - token-classification
  - generated_from_trainer
datasets:
  - Beijuka/Luganda_Monolingual_PII_dataset
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: luganda-ner-bert-v7
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: Beijuka/Luganda_Monolingual_PII_dataset
          type: Beijuka/Luganda_Monolingual_PII_dataset
          args: 'split: train+validation+test'
        metrics:
          - name: Precision
            type: precision
            value: 0.8317757009345794
          - name: Recall
            type: recall
            value: 0.7954319761668321
          - name: F1
            type: f1
            value: 0.8131979695431472
          - name: Accuracy
            type: accuracy
            value: 0.9486124353891705

luganda-ner-bert-v7

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the Beijuka/Luganda_Monolingual_PII_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3956
  • Precision: 0.8318
  • Recall: 0.7954
  • F1: 0.8132
  • Accuracy: 0.9486

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 261 0.4093 0.6488 0.4697 0.5449 0.8871
0.5031 2.0 522 0.3278 0.6709 0.6842 0.6775 0.9099
0.5031 3.0 783 0.2721 0.7816 0.7071 0.7424 0.9317
0.1642 4.0 1044 0.2540 0.7776 0.7776 0.7776 0.9399
0.1642 5.0 1305 0.3182 0.7473 0.7607 0.7539 0.9280
0.0775 6.0 1566 0.3038 0.7843 0.7944 0.7893 0.9409
0.0775 7.0 1827 0.3407 0.8504 0.7567 0.8008 0.9400
0.0362 8.0 2088 0.3267 0.7886 0.8004 0.7945 0.9429
0.0362 9.0 2349 0.3229 0.8316 0.7845 0.8074 0.9499
0.0201 10.0 2610 0.3521 0.8475 0.7726 0.8083 0.9476
0.0201 11.0 2871 0.3629 0.8126 0.8054 0.8090 0.9468
0.0095 12.0 3132 0.3817 0.8012 0.8083 0.8047 0.9466
0.0095 13.0 3393 0.3956 0.8318 0.7954 0.8132 0.9486
0.0057 14.0 3654 0.3798 0.8219 0.7974 0.8095 0.9458
0.0057 15.0 3915 0.4196 0.8166 0.7825 0.7992 0.9445

Framework versions

  • Transformers 4.53.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2