|
--- |
|
library_name: transformers |
|
language: |
|
- lg |
|
license: apache-2.0 |
|
base_model: google-bert/bert-base-multilingual-cased |
|
tags: |
|
- named-entity-recognition |
|
- luganda |
|
- african-languages |
|
- pii-detection |
|
- token-classification |
|
- generated_from_trainer |
|
datasets: |
|
- Beijuka/Luganda_Monolingual_PII_dataset |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: luganda-ner-bert-v7 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: Beijuka/Luganda_Monolingual_PII_dataset |
|
type: Beijuka/Luganda_Monolingual_PII_dataset |
|
args: 'split: train+validation+test' |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8317757009345794 |
|
- name: Recall |
|
type: recall |
|
value: 0.7954319761668321 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8131979695431472 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9486124353891705 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# luganda-ner-bert-v7 |
|
|
|
This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the Beijuka/Luganda_Monolingual_PII_dataset dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3956 |
|
- Precision: 0.8318 |
|
- Recall: 0.7954 |
|
- F1: 0.8132 |
|
- Accuracy: 0.9486 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 261 | 0.4093 | 0.6488 | 0.4697 | 0.5449 | 0.8871 | |
|
| 0.5031 | 2.0 | 522 | 0.3278 | 0.6709 | 0.6842 | 0.6775 | 0.9099 | |
|
| 0.5031 | 3.0 | 783 | 0.2721 | 0.7816 | 0.7071 | 0.7424 | 0.9317 | |
|
| 0.1642 | 4.0 | 1044 | 0.2540 | 0.7776 | 0.7776 | 0.7776 | 0.9399 | |
|
| 0.1642 | 5.0 | 1305 | 0.3182 | 0.7473 | 0.7607 | 0.7539 | 0.9280 | |
|
| 0.0775 | 6.0 | 1566 | 0.3038 | 0.7843 | 0.7944 | 0.7893 | 0.9409 | |
|
| 0.0775 | 7.0 | 1827 | 0.3407 | 0.8504 | 0.7567 | 0.8008 | 0.9400 | |
|
| 0.0362 | 8.0 | 2088 | 0.3267 | 0.7886 | 0.8004 | 0.7945 | 0.9429 | |
|
| 0.0362 | 9.0 | 2349 | 0.3229 | 0.8316 | 0.7845 | 0.8074 | 0.9499 | |
|
| 0.0201 | 10.0 | 2610 | 0.3521 | 0.8475 | 0.7726 | 0.8083 | 0.9476 | |
|
| 0.0201 | 11.0 | 2871 | 0.3629 | 0.8126 | 0.8054 | 0.8090 | 0.9468 | |
|
| 0.0095 | 12.0 | 3132 | 0.3817 | 0.8012 | 0.8083 | 0.8047 | 0.9466 | |
|
| 0.0095 | 13.0 | 3393 | 0.3956 | 0.8318 | 0.7954 | 0.8132 | 0.9486 | |
|
| 0.0057 | 14.0 | 3654 | 0.3798 | 0.8219 | 0.7974 | 0.8095 | 0.9458 | |
|
| 0.0057 | 15.0 | 3915 | 0.4196 | 0.8166 | 0.7825 | 0.7992 | 0.9445 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.53.0 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.6.0 |
|
- Tokenizers 0.21.2 |
|
|