|
--- |
|
license: mit |
|
tags: |
|
- vla |
|
- robotics |
|
- multimodal |
|
- autoregressive |
|
library_name: transformers |
|
pipeline_tag: robotics |
|
--- |
|
|
|
# Being-H0: Vision-Language-Action Pretraining from Large-Scale Human Videos |
|
|
|
<p align="center"> |
|
<img src="https://raw.githubusercontent.com/BeingBeyond/Being-H0/refs/heads/main/docs/assets/image/being-h0-black.png" width="300"/> |
|
<p> |
|
|
|
<div align="center"> |
|
|
|
[](https://beingbeyond.github.io/Being-H0) |
|
[](https://arxiv.org/abs/2507.15597) |
|
[](https://huggingface.co/BeingBeyond/Being-H0) |
|
[](./LICENSE) |
|
|
|
</div> |
|
|
|
<p align="center"> |
|
<img src="https://raw.githubusercontent.com/BeingBeyond/Being-H0/refs/heads/main/docs/assets/image/overview.png"/> |
|
<p> |
|
|
|
|
|
We introduce **Being-H0**, the first dexterous Vision-Language-Action model pretrained from large-scale human videos via explicit hand motion modeling. |
|
|
|
## News |
|
|
|
- **[2025-08-02]**: We release the **Being-H0** codebase and pretrained models! Check our [Hugging Face Model Hub](https://huggingface.co/BeingBeyond/Being-H0) for more details. π₯π₯π₯ |
|
- **[2025-07-21]**: We publish **Being-H0**! Check our paper [here](https://arxiv.org/abs/2507.15597). πππ |
|
|
|
## Model Checkpoints |
|
|
|
Download pre-trained models from Hugging Face: |
|
|
|
| Model Type | Model Name | Parameters | Description | |
|
|------------|------------|------------|-------------| |
|
| **Motion Model** | [Being-H0-GRVQ-8K](https://huggingface.co/BeingBeyond/Being-H0-GRVQ-8K) | - | Motion tokenizer | |
|
| **VLA Pre-trained** | [Being-H0-1B-2508](https://huggingface.co/BeingBeyond/Being-H0-1B-2508) | 1B | Base vision-language-action model | |
|
| **VLA Pre-trained** | [Being-H0-8B-2508](https://huggingface.co/BeingBeyond/Being-H0-8B-2508) | 8B | Base vision-language-action model | |
|
| **VLA Pre-trained** | [Being-H0-14B-2508](https://huggingface.co/BeingBeyond/Being-H0-14B-2508) | 14B | Base vision-language-action model | |
|
| **VLA Post-trained** | [Being-H0-8B-Align-2508](https://huggingface.co/BeingBeyond/Being-H0-8B-Align-2508) | 8B | Fine-tuned for robot alignment | |
|
|
|
## Dataset |
|
|
|
We have provided the dataset for post-training the VLA model. The dataset is available in Hugging Face: |
|
|
|
| Dataset Type | Dataset Name | Description | |
|
|--------------|--------------|-------------| |
|
| **VLA Post-training** | [h0_post_train_db_2508](https://huggingface.co/datasets/BeingBeyond/h0_post_train_db_2508) | Post-training dataset for pretrained Being-H0 VLA model | |
|
|
|
## Setup |
|
|
|
### Clone repository |
|
|
|
```bash |
|
git clone https://github.com/BeingBeyond/Being-H0.git |
|
cd Being-H0 |
|
``` |
|
|
|
### Create environment |
|
```bash |
|
conda env create -f environment.yml |
|
conda activate beingvla |
|
``` |
|
|
|
### Install package |
|
```bash |
|
pip install flash-attn --no-build-isolation |
|
pip install git+https://github.com/lixiny/manotorch.git |
|
pip install git+https://github.com/mattloper/chumpy.git |
|
``` |
|
|
|
### Download MANO package |
|
|
|
- Visit [MANO website](http://mano.is.tue.mpg.de/) |
|
- Create an account by clicking _Sign Up_ and provide your information |
|
- Download Models and Code (the downloaded file should have the format `mano_v*_*.zip`). Note that all code and data from this download falls under the [MANO license](http://mano.is.tue.mpg.de/license). |
|
- Unzip and copy the contents in `mano_v*_*/` folder to the `beingvla/models/motion/mano/` folder |
|
|
|
## Inference |
|
|
|
### Motion Generation |
|
|
|
- To generate hand motion tokens and render the motion, you should use the Motion Model (`Being-H0-GRVQ-8K`) and the pretrained VLA model (`Being-H0-{1B,8B,14B}-2508`). |
|
- You can use the following command to inference. For the `--motion_code_path`, you should use a `+` symbol to jointly specify the wrist and finger motion code paths, e.g., `--motion_code_path "/path/to/Being-H0-GRVQ-8K/wrist/+/path/to/Being-H0-GRVQ-8K/finger/"`. |
|
- The `--hand_mode` can be set to `left`, `right`, or `both` to specify which hand to use for the task. |
|
|
|
```bash |
|
python -m beingvla.inference.vla_internvl_inference \ |
|
--model_path /path/to/Being-H0-XXX \ |
|
--motion_code_path "/path/to/Being-H0-GRVQ-8K/wrist/+/path/to/Being-H0-GRVQ-8K/finger/" \ |
|
--input_image ./playground/unplug_airpods.jpg \ |
|
--task_description "unplug the charging cable from the AirPods" \ |
|
--hand_mode both \ |
|
--num_samples 3 \ |
|
--num_seconds 4 \ |
|
--enable_render true \ |
|
--gpu_device 0 \ |
|
--output_dir ./work_dirs/ |
|
``` |
|
|
|
- **To inference on your own photos**: See [Camera Intrinsics Guide](https://github.com/BeingBeyond/Being-H0/blob/main/docs/camera_intrinsics.md) for how to estimate camera intrinsics and input them for custom inference. |
|
|
|
### Evaluation |
|
|
|
- You can use our pretrained VLA model to post-train on real robot data. When you get your post-trained model (e.g., `Being-H0-8B-Align-2508`), you can use the following commands to communicate with real robot, or evaluate the model on a robot task. |
|
|
|
- Setup robot communication: |
|
|
|
```bash |
|
python -m beingvla.models.motion.m2m.aligner.run_server \ |
|
--model-path /path/to/Being-H0-XXX-Align \ |
|
--port 12305 \ |
|
--action-chunk-length 16 |
|
``` |
|
- Run evaluation on robot task: |
|
|
|
```bash |
|
python -m beingvla.models.motion.m2m.aligner.eval_policy \ |
|
--model-path /path/to/Being-H0-XXX-Align \ |
|
--zarr-path /path/to/real-robot/data \ |
|
--task_description "Put the little white duck into the cup." \ |
|
--action-chunk-length 16 |
|
``` |
|
|
|
## Contributing and Building on Being-H0 |
|
|
|
We encourage researchers and practitioners to leverage Being-H0 as a foundation for their own creative experiments and applications. Whether you're adapting Being-H0 to new robotic platforms, exploring novel hand manipulation tasks, or extending the model to new domains, our modular codebase is designed to support your innovations. We welcome contributions of all kinds - from bug fixes and documentation improvements to new features and model architectures. By building on Being-H0 together, we can advance the field of dexterous vision-language-action modeling and enable robots to understand and replicate the rich complexity of human hand movements. Join us in making robotic manipulation more intuitive, capable, and accessible to all. |
|
|
|
## Citation |
|
If you find our work useful, please consider citing us and give a star to our repository! πππ |
|
|
|
**Being-H0** |
|
|
|
```bibtex |
|
@article{beingbeyond2025beingh0, |
|
title={Being-H0: Vision-Language-Action Pretraining from Large-Scale Human Videos}, |
|
author={Luo, Hao and Feng, Yicheng and Zhang, Wanpeng and Zheng, Sipeng and Wang, Ye and Yuan, Haoqi and Liu, Jiazheng and Xu, Chaoyi and Jin, Qin and Lu, Zongqing}, |
|
journal={arXiv preprint arXiv:2507.15597}, |
|
year={2025} |
|
} |
|
``` |