|
--- |
|
base_model: |
|
- lodestones/Chroma |
|
base_model_relation: quantized |
|
pipeline_tag: text-to-image |
|
tags: |
|
- dfloat11 |
|
- df11 |
|
- lossless compression |
|
- 70% size, 100% accuracy |
|
--- |
|
|
|
# DFloat11 Compressed Model: `lodestones/Chroma` |
|
|
|
This is a **DFloat11 losslessly compressed** version of the original `lodestones/Chroma` (v39) model. It reduces model size by **32%** compared to the original BFloat16 model, while maintaining **bit-identical outputs** and supporting **efficient GPU inference**. |
|
|
|
π₯π₯π₯ Thanks to DFloat11 compression, Chroma can now run smoothly on a single 16GB GPU without any quality loss. π₯π₯π₯ |
|
|
|
### π Performance Comparison |
|
|
|
| Metric | Chroma (BFloat16) | Chroma (DFloat11) | |
|
| ----------------------------------------------- | ------------------- | ------------------- | |
|
| Model Size | 17.80 GB | 12.16 GB | |
|
| Peak GPU Memory<br>(1024Γ1024 image generation) | 18.33 GB | 13.26 GB | |
|
| Generation Time<br>(A100 GPU) | 56 seconds | 59 seconds | |
|
|
|
### π§ How to Use |
|
|
|
1. Install or upgrade the DFloat11 pip package *(installs the CUDA kernel automatically; requires a CUDA-compatible GPU and PyTorch installed)*: |
|
|
|
```bash |
|
pip install -U dfloat11[cuda12] |
|
# or if you have CUDA version 11: |
|
# pip install -U dfloat11[cuda11] |
|
``` |
|
|
|
2. Install or upgrade the diffusers library. |
|
|
|
```bash |
|
pip install -U diffusers |
|
``` |
|
|
|
3. To use the DFloat11 model, run the following example code in Python: |
|
|
|
```python |
|
import torch |
|
from diffusers import ChromaTransformer2DModel, ChromaPipeline |
|
from transformers.modeling_utils import no_init_weights |
|
from dfloat11 import DFloat11Model |
|
|
|
with no_init_weights(): |
|
transformer = ChromaTransformer2DModel().to(torch.bfloat16) |
|
|
|
DFloat11Model.from_pretrained( |
|
"DFloat11/Chroma-DF11", |
|
bfloat16_model=transformer, |
|
device="cpu", |
|
) |
|
|
|
pipe = ChromaPipeline.from_pretrained("lodestones/Chroma", transformer=transformer, torch_dtype=torch.bfloat16) |
|
pipe.enable_model_cpu_offload() |
|
|
|
prompt = [ |
|
"A high-fashion close-up portrait of a blonde woman in clear sunglasses. The image uses a bold teal and red color split for dramatic lighting. The background is a simple teal-green. The photo is sharp and well-composed, and is designed for viewing with anaglyph 3D glasses for optimal effect. It looks professionally done." |
|
] |
|
negative_prompt = ["low quality, ugly, unfinished, out of focus, deformed, disfigure, blurry, smudged, restricted palette, flat colors"] |
|
|
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
generator=torch.Generator("cpu").manual_seed(433), |
|
num_inference_steps=40, |
|
guidance_scale=3.0, |
|
).images[0] |
|
|
|
image.save("chroma-output.png") |
|
``` |
|
|
|
|
|
### π How It Works |
|
|
|
We apply **Huffman coding** to losslessly compress the exponent bits of BFloat16 model weights, which are highly compressible (their 8 bits carry only ~2.6 bits of actual information). To enable fast inference, we implement a highly efficient CUDA kernel that performs on-the-fly weight decompression directly on the GPU. |
|
|
|
The result is a model that is **~32% smaller**, delivers **bit-identical outputs**, and achieves performance **comparable to the original** BFloat16 model. |
|
|
|
Learn more in our [research paper](https://arxiv.org/abs/2504.11651). |
|
|
|
### π Learn More |
|
|
|
* **Paper**: [70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float](https://arxiv.org/abs/2504.11651) |
|
* **GitHub**: [https://github.com/LeanModels/DFloat11](https://github.com/LeanModels/DFloat11) |
|
* **HuggingFace**: [https://huggingface.co/DFloat11](https://huggingface.co/DFloat11) |
|
|