|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: xlnet-base-cased-finetuned-WikiCorpus-PoS |
|
results: [] |
|
datasets: |
|
- Babelscape/wikineural |
|
language: |
|
- en |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- recall |
|
- precision |
|
- seqeval |
|
pipeline_tag: token-classification |
|
--- |
|
|
|
# xlnet-base-cased-finetuned-WikiNeural-PoS |
|
|
|
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased). |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0949 |
|
- Loc: {'precision': 0.9289891395154553, 'recall': 0.9336691855583543, 'f1': 0.931323283082077, 'number': 5955} |
|
- Misc: {'precision': 0.8191960332920134, 'recall': 0.9140486069946651, 'f1': 0.8640268957788569, 'number': 5061} |
|
- Org: {'precision': 0.9199886104783599, 'recall': 0.9367932734125833, 'f1': 0.9283148972848728, 'number': 3449} |
|
- Per: {'precision': 0.9687377113645301, 'recall': 0.9456813819577735, 'f1': 0.9570707070707071, 'number': 5210} |
|
- Overall Precision: 0.9068 |
|
- Overall Recall: 0.9324 |
|
- Overall F1: 0.9194 |
|
- Overall Accuracy: 0.9904 |
|
|
|
## Model description |
|
|
|
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/WikiNeural%20-%20Transformer%20Comparison/POS%20Project%20with%20Wikineural%20Dataset%20-%20XLNet%20Transformer.ipynb |
|
|
|
## Intended uses & limitations |
|
|
|
This model is intended to demonstrate my ability to solve a complex problem using technology. |
|
|
|
## Training and evaluation data |
|
|
|
Dataset Source: https://huggingface.co/datasets/Babelscape/wikineural |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Loc | Misc | Org | Per | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| |
|
| 0.1119 | 1.0 | 5795 | 0.1067 | {'precision': 0.9053637984119267, 'recall': 0.9382031905961377, 'f1': 0.9214910110506349, 'number': 5955} | {'precision': 0.7967393230551125, 'recall': 0.8883619837976684, 'f1': 0.8400597907324365, 'number': 5061} | {'precision': 0.911225658648339, 'recall': 0.9225862568860539, 'f1': 0.9168707679008787, 'number': 3449} | {'precision': 0.958470156461271, 'recall': 0.9523992322456813, 'f1': 0.9554250505439492, 'number': 5210} | 0.8899 | 0.9264 | 0.9078 | 0.9887 | |
|
| 0.0724 | 2.0 | 11590 | 0.0949 | {'precision': 0.9289891395154553, 'recall': 0.9336691855583543, 'f1': 0.931323283082077, 'number': 5955} | {'precision': 0.8191960332920134, 'recall': 0.9140486069946651, 'f1': 0.8640268957788569, 'number': 5061} | {'precision': 0.9199886104783599, 'recall': 0.9367932734125833, 'f1': 0.9283148972848728, 'number': 3449} | {'precision': 0.9687377113645301, 'recall': 0.9456813819577735, 'f1': 0.9570707070707071, 'number': 5210} | 0.9068 | 0.9324 | 0.9194 | 0.9904 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |