IGNF
/

AGarioud's picture
Update README.md
fcfd706 verified
metadata
license: etalab-2.0
pipeline_tag: image-segmentation
tags:
  - semantic segmentation
  - pytorch
  - landcover
model-index:
  - name: FLAIR-HUB_LC-A_swinbase-upernet
    results:
      - task:
          type: semantic-segmentation
        dataset:
          name: IGNF/FLAIR-HUB/
          type: earth-observation-dataset
        metrics:
          - type: mIoU
            value: 64.131
            name: mIoU
          - type: OA
            value: 77.453
            name: Overall Accuracy
          - type: IoU
            value: 83.859
            name: IoU building
          - type: IoU
            value: 78.385
            name: IoU greenhouse
          - type: IoU
            value: 61.59
            name: IoU swimming pool
          - type: IoU
            value: 75.696
            name: IoU impervious surface
          - type: IoU
            value: 57.171
            name: IoU pervious surface
          - type: IoU
            value: 62.939
            name: IoU bare soil
          - type: IoU
            value: 90.35
            name: IoU water
          - type: IoU
            value: 63.381
            name: IoU snow
          - type: IoU
            value: 54.34
            name: IoU herbaceous vegetation
          - type: IoU
            value: 57.135
            name: IoU agricultural land
          - type: IoU
            value: 34.85
            name: IoU plowed land
          - type: IoU
            value: 77.743
            name: IoU vineyard
          - type: IoU
            value: 71.732
            name: IoU deciduous
          - type: IoU
            value: 62.603
            name: IoU coniferous
          - type: IoU
            value: 30.189
            name: IoU brushwood
library_name: pytorch

🌐 FLAIR-HUB Model Collection

  • Trained on: FLAIR-HUB dataset 🔗
  • Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
  • Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
  • Decoders: UNet, UPerNet
  • Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
  • Class nomenclature: 15 classes for LC, 23 classes for LPIS
🆔
Model ID
🗺️
Land-cover
🌾
Crop-types
🛩️
Aerial
⛰️
Elevation
🛰️
SPOT
🛰️
S2 t.s.
🛰️
S1 t.s.
🛩️
Historical
LC-A
LC-D
LC-F
LC-G
LC-I
LC-L
LPIS-A
LPIS-F
LPIS-I
LPIS-J

🔍 Model: FLAIR-HUB_LC-A_swinbase-upernet

  • Encoder: swin_base_patch4_window12_384
  • Decoder: upernet
  • Metrics:
  • mIoU O.A. F-score Precision Recall
    64.13% 77.45% 76.88% 77.36% 76.89%
  • Params.: 89.4

General Informations


Training Config Hyperparameters

- Model architecture: swin_base_patch4_window12_384-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
    - default: 1.0
    - masked classes: [clear cut, ligneous, mixed, other]  weight = 0
- Input channels:
    - AERIAL_RGBI : [4,1,2]
- Input normalization (custom):
    - AERIAL_RGBI:
        mean: [106.59, 105.66, 111.35]
        std:  [39.78, 52.23, 45.62]

Training Data

- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Classes distribution.

Training Logging

Training logging.

Metrics

Metric Value
mIoU 64.13%
Overall Accuracy 77.45%
F-score 76.88%
Precision 77.36%
Recall 76.89%
Class IoU (%) F-score (%) Precision (%) Recall (%)
building 83.86 91.22 91.21 91.23
greenhouse 78.38 87.88 83.69 92.52
swimming pool 61.59 76.23 76.84 75.63
impervious surface 75.70 86.17 86.35 85.99
pervious surface 57.17 72.75 70.97 74.62
bare soil 62.94 77.25 73.75 81.11
water 90.35 94.93 95.95 93.93
snow 63.38 77.59 94.83 65.65
herbaceous vegetation 54.34 70.42 73.05 67.96
agricultural land 57.14 72.72 69.80 75.90
plowed land 34.85 51.69 49.20 54.43
vineyard 77.74 87.48 84.99 90.11
deciduous 71.73 83.54 82.25 84.87
coniferous 62.60 77.00 79.23 74.90
brushwood 30.19 46.38 48.34 44.57

Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE

Cite

BibTeX:

@article{ign2025flairhub,
  doi = {10.48550/arXiv.2506.07080},
  url = {https://arxiv.org/abs/2506.07080},
  author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
  title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
  publisher = {arXiv},
  year = {2025}
}

APA:

Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier. 
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). 
DOI: https://doi.org/10.48550/arXiv.2506.07080