metadata
license: etalab-2.0
pipeline_tag: image-segmentation
tags:
- semantic segmentation
- pytorch
- landcover
model-index:
- name: FLAIR-HUB_LC-A_swinbase-upernet
results:
- task:
type: semantic-segmentation
dataset:
name: IGNF/FLAIR-HUB/
type: earth-observation-dataset
metrics:
- type: mIoU
value: 64.131
name: mIoU
- type: OA
value: 77.453
name: Overall Accuracy
- type: IoU
value: 83.859
name: IoU building
- type: IoU
value: 78.385
name: IoU greenhouse
- type: IoU
value: 61.59
name: IoU swimming pool
- type: IoU
value: 75.696
name: IoU impervious surface
- type: IoU
value: 57.171
name: IoU pervious surface
- type: IoU
value: 62.939
name: IoU bare soil
- type: IoU
value: 90.35
name: IoU water
- type: IoU
value: 63.381
name: IoU snow
- type: IoU
value: 54.34
name: IoU herbaceous vegetation
- type: IoU
value: 57.135
name: IoU agricultural land
- type: IoU
value: 34.85
name: IoU plowed land
- type: IoU
value: 77.743
name: IoU vineyard
- type: IoU
value: 71.732
name: IoU deciduous
- type: IoU
value: 62.603
name: IoU coniferous
- type: IoU
value: 30.189
name: IoU brushwood
library_name: pytorch
🌐 FLAIR-HUB Model Collection
- Trained on: FLAIR-HUB dataset 🔗
- Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
- Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
- Decoders: UNet, UPerNet
- Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
- Class nomenclature: 15 classes for LC, 23 classes for LPIS
🔍 Model: FLAIR-HUB_LC-A_swinbase-upernet
- Encoder: swin_base_patch4_window12_384
- Decoder: upernet
- Metrics:
- Params.: 89.4
General Informations
- Contact: [email protected]
- Code repository: https://github.com/IGNF/FLAIR-HUB
- Paper: https://arxiv.org/abs/2506.07080
- Project page: https://ignf.github.io/FLAIR/FLAIR-HUB/flairhub
- Developed by: IGN
- Compute infrastructure:
- software: python, pytorch-lightning
- hardware: HPC/AI resources provided by GENCI-IDRIS
- License: Etalab 2.0
Training Config Hyperparameters
- Model architecture: swin_base_patch4_window12_384-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
- default: 1.0
- masked classes: [clear cut, ligneous, mixed, other] → weight = 0
- Input channels:
- AERIAL_RGBI : [4,1,2]
- Input normalization (custom):
- AERIAL_RGBI:
mean: [106.59, 105.66, 111.35]
std: [39.78, 52.23, 45.62]
Training Data
- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700

Training Logging

Metrics
Metric | Value |
---|---|
mIoU | 64.13% |
Overall Accuracy | 77.45% |
F-score | 76.88% |
Precision | 77.36% |
Recall | 76.89% |
Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) |
---|---|---|---|---|
building | 83.86 | 91.22 | 91.21 | 91.23 |
greenhouse | 78.38 | 87.88 | 83.69 | 92.52 |
swimming pool | 61.59 | 76.23 | 76.84 | 75.63 |
impervious surface | 75.70 | 86.17 | 86.35 | 85.99 |
pervious surface | 57.17 | 72.75 | 70.97 | 74.62 |
bare soil | 62.94 | 77.25 | 73.75 | 81.11 |
water | 90.35 | 94.93 | 95.95 | 93.93 |
snow | 63.38 | 77.59 | 94.83 | 65.65 |
herbaceous vegetation | 54.34 | 70.42 | 73.05 | 67.96 |
agricultural land | 57.14 | 72.72 | 69.80 | 75.90 |
plowed land | 34.85 | 51.69 | 49.20 | 54.43 |
vineyard | 77.74 | 87.48 | 84.99 | 90.11 |
deciduous | 71.73 | 83.54 | 82.25 | 84.87 |
coniferous | 62.60 | 77.00 | 79.23 | 74.90 |
brushwood | 30.19 | 46.38 | 48.34 | 44.57 |
Inference
Aerial ROI

Inference ROI

Cite
BibTeX:
@article{ign2025flairhub,
doi = {10.48550/arXiv.2506.07080},
url = {https://arxiv.org/abs/2506.07080},
author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
publisher = {arXiv},
year = {2025}
}
APA:
Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier.
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025).
DOI: https://doi.org/10.48550/arXiv.2506.07080