license: apache-2.0
library_name: vllm
pipeline_tag: image-text-to-text
tags:
- int4
- vllm
- llmcompressor
base_model: mistralai/Mistral-Small-3.1-24B-Instruct-2503
Mistral-Small-3.1-24B-Instruct-2503-GPTQ-4b-128g
Model Overview
This model was obtained by quantizing the weights of Mistral-Small-3.1-24B-Instruct-2503 to INT4 data type. This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.
Only the weights of the linear operators within language_model
transformers blocks are quantized. Vision model and multimodal projection are kept in original precision. Weights are quantized using a symmetric per-group scheme, with group size 128. The GPTQ algorithm is applied for quantization.
Model checkpoint is saved in compressed_tensors format.
Usage
To use the model in
transformers
update the package to stable release of Mistral-3pip install git+https://github.com/huggingface/[email protected]
To use the model in
vLLM
update the package to versionvllm>=0.8.0
.
And example of inference via transformers is provided below:
pip install accelerate
from transformers import AutoProcessor, AutoModelForImageTextToText from PIL import Image import requests import torch
model_id = "ISTA-DASLab/Mistral-Small-3.1-24B-Instruct-2503-GPTQ-4b-128g"
model = AutoModelForImageTextToText.from_pretrained( model_id, device_map="auto" ).eval()
processor = AutoProcessor.from_pretrained(model_id)
messages = [ { "role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}] }, { "role": "user", "content": [ {"type": "image", "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg"}, {"type": "text", "text": "Describe this image in detail."} ] } ]
inputs = processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt" ).to(model.device, dtype=torch.bfloat16)
input_len = inputs["input_ids"].shape[-1]
with torch.inference_mode(): generation = model.generate(**inputs, max_new_tokens=100, do_sample=False) generation = generation[0][input_len:]
decoded = processor.decode(generation, skip_special_tokens=True) print(decoded)