|
--- |
|
license: mit |
|
language: |
|
- en |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
pipeline_tag: tabular-classification |
|
tags: |
|
- classification |
|
- mushrooms |
|
--- |
|
|
|
# Model Card for Infinitode/MCM-OPEN-ARC |
|
|
|
Repository: https://github.com/Infinitode/OPEN-ARC/ |
|
|
|
## Model Description |
|
|
|
OPEN-ARC-MC is a simple RandomForestClassifier model developed as part of Infinitode's OPEN-ARC initiative. It was designed to determine whether a mushroom is edible or inedible, based on its appearance, habitat, and several other factors. |
|
|
|
**Architecture**: |
|
|
|
- **RandomForestClassifier**: `random_state=42`, `class_weight="balanced"`. |
|
- **Framework**: SKLearn |
|
- **Training Setup**: Trained using the default params. |
|
|
|
## Uses |
|
|
|
- Identifying potentially poisonous mushrooms to avoid their consumption. |
|
- Advancing knowledge and research in mushroom edibility and toxicology. |
|
|
|
## Limitations |
|
|
|
- May provide inaccurate assessments regarding mushroom edibility; caution is advised when considering these outputs. Always consult expert human guidance. |
|
|
|
### Disclaimer |
|
|
|
This model is intended solely for educational purposes and must not be utilized for real-life mushroom classification or any decision-making processes regarding mushroom consumption. Although the model demonstrates strong performance on the provided dataset, it has not undergone comprehensive validation for real-world applications and may fail to reliably identify poisonous mushrooms under all circumstances. Always seek advice from an expert or rely on trusted resources when identifying mushrooms. |
|
|
|
## Training Data |
|
|
|
- Dataset: Mushroom Classification dataset from Kaggle. |
|
- Source URL: https://www.kaggle.com/datasets/uciml/mushroom-classification |
|
- Content: Mushroom appearance, and other factors, along with the edibility of the mushroom. |
|
- Size: 8124 entries of mushroom features and target values. |
|
- Preprocessing: Mapped all string values to numeric values. |
|
|
|
## Training Procedure |
|
|
|
- Metrics: accuracy (CV), precision, recall, F1 |
|
- Train/Testing Split: 80% train, 20% testing. |
|
|
|
## Evaluation Results |
|
|
|
| Metric | Value | |
|
| ------ | ----- | |
|
| Testing Accuracy (CV 5-fold) | 91.0% | |
|
| Testing Weighted Average Precision | 100% | |
|
| Testing Weighted Average Recall | 100% | |
|
| Testing Weighted Average F1 | 100% | |
|
|
|
## How to Use |
|
|
|
```python |
|
feature_options = { |
|
'cap-shape': {'b': 'bell', 'c': 'conical', 'x': 'convex', 'f': 'flat', 'k': 'knobbed', 's': 'sunken'}, |
|
'cap-surface': {'f': 'fibrous', 'g': 'grooves', 'y': 'scaly', 's': 'smooth'}, |
|
'cap-color': {'n': 'brown', 'b': 'buff', 'c': 'cinnamon', 'g': 'gray', 'r': 'green', 'p': 'pink', 'u': 'purple', 'e': 'red', 'w': 'white', 'y': 'yellow'}, |
|
'bruises': {'t': 'bruises', 'f': 'no'}, |
|
'odor': {'a': 'almond', 'l': 'anise', 'c': 'creosote', 'y': 'fishy', 'f': 'foul', 'm': 'musty', 'n': 'none', 'p': 'pungent', 's': 'spicy'}, |
|
'gill-attachment': {'a': 'attached', 'd': 'descending', 'f': 'free', 'n': 'notched'}, |
|
'gill-spacing': {'c': 'close', 'w': 'crowded', 'd': 'distant'}, |
|
'gill-size': {'b': 'broad', 'n': 'narrow'}, |
|
'gill-color': {'k': 'black', 'n': 'brown', 'b': 'buff', 'h': 'chocolate', 'g': 'gray', 'r': 'green', 'o': 'orange', 'p': 'pink', 'u': 'purple', 'e': 'red', 'w': 'white', 'y': 'yellow'}, |
|
'stalk-shape': {'e': 'enlarging', 't': 'tapering'}, |
|
'stalk-root': {'b': 'bulbous', 'c': 'club', 'u': 'cup', 'e': 'equal', 'z': 'rhizomorphs', 'r': 'rooted', '?': 'missing'}, |
|
'stalk-surface-above-ring': {'f': 'fibrous', 'y': 'scaly', 'k': 'silky', 's': 'smooth'}, |
|
'stalk-surface-below-ring': {'f': 'fibrous', 'y': 'scaly', 'k': 'silky', 's': 'smooth'}, |
|
'stalk-color-above-ring': {'n': 'brown', 'b': 'buff', 'c': 'cinnamon', 'g': 'gray', 'o': 'orange', 'p': 'pink', 'e': 'red', 'w': 'white', 'y': 'yellow'}, |
|
'stalk-color-below-ring': {'n': 'brown', 'b': 'buff', 'c': 'cinnamon', 'g': 'gray', 'o': 'orange', 'p': 'pink', 'e': 'red', 'w': 'white', 'y': 'yellow'}, |
|
'veil-type': {'p': 'partial', 'u': 'universal'}, |
|
'veil-color': {'n': 'brown', 'o': 'orange', 'w': 'white', 'y': 'yellow'}, |
|
'ring-number': {'n': 'none', 'o': 'one', 't': 'two'}, |
|
'ring-type': {'c': 'cobwebby', 'e': 'evanescent', 'f': 'flaring', 'l': 'large', 'n': 'none', 'p': 'pendant', 's': 'sheathing', 'z': 'zone'}, |
|
'spore-print-color': {'k': 'black', 'n': 'brown', 'b': 'buff', 'h': 'chocolate', 'r': 'green', 'o': 'orange', 'u': 'purple', 'w': 'white', 'y': 'yellow'}, |
|
'population': {'a': 'abundant', 'c': 'clustered', 'n': 'numerous', 's': 'scattered', 'v': 'several', 'y': 'solitary'}, |
|
'habitat': {'g': 'grasses', 'l': 'leaves', 'm': 'meadows', 'p': 'paths', 'u': 'urban', 'w': 'waste', 'd': 'woods'} |
|
} |
|
|
|
def get_user_input(): |
|
""" |
|
Collects user input for each mushroom feature. |
|
|
|
Returns: |
|
dict: A dictionary containing the user's input for each feature. |
|
""" |
|
user_input = {} |
|
print("Please provide the following mushroom characteristics:") |
|
for feature, options in feature_options.items(): |
|
print(f"\n{feature.replace('-', ' ').capitalize()}:") |
|
for key, value in options.items(): |
|
print(f" {key}: {value}") |
|
while True: |
|
choice = input(f"Enter the corresponding letter for {feature}: ").strip().lower() |
|
if choice in options: |
|
user_input[feature] = choice |
|
break |
|
else: |
|
print("Invalid input. Please enter one of the listed letters.") |
|
return user_input |
|
|
|
user_input = get_user_input() |
|
|
|
def predict_mushroom(features): |
|
""" |
|
Predict whether a mushroom is edible or poisonous based on its features. |
|
|
|
Parameters: |
|
features (dict): A dictionary of mushroom features with feature names as keys and corresponding categorical values. |
|
|
|
Returns: |
|
str: 'Edible' or 'Poisonous' |
|
""" |
|
# Load the trained model and mappings |
|
model = joblib.load('mushroom_classifier.pkl') |
|
mappings = joblib.load('mappings.pkl') |
|
|
|
# Initialize a dictionary to hold the numerical features |
|
numerical_features = {} |
|
|
|
# Map each feature to its numerical value |
|
for feature, value in features.items(): |
|
if feature in mappings: |
|
if value in mappings[feature]: |
|
numerical_features[feature] = mappings[feature][value] |
|
else: |
|
raise ValueError(f"Invalid value '{value}' for feature '{feature}'.") |
|
else: |
|
raise ValueError(f"Feature '{feature}' is not recognized.") |
|
|
|
# Convert the numerical features into a DataFrame |
|
input_df = pd.DataFrame([numerical_features]) |
|
|
|
# Predict using the trained model |
|
prediction = model.predict(input_df) |
|
|
|
# Interpret the prediction |
|
if prediction[0] == 0: |
|
return 'Edible' |
|
else: |
|
return 'Poisonous' |
|
|
|
# Predict edibility |
|
try: |
|
result = predict_mushroom(user_input) |
|
print(f"\nThe mushroom is likely: {result}") |
|
except ValueError as e: |
|
print(f"Error: {e}") |
|
``` |
|
|
|
## Contact |
|
|
|
For questions or issues, open a GitHub issue or reach out at https://infinitode.netlify.app/forms/contact. |