whisper-small-tf / README.md
Leonel-Maia's picture
End of training
01e83a8 verified
metadata
library_name: transformers
license: apache-2.0
base_model: Leonel-Maia/fongbe-whisper-small
tags:
  - generated_from_trainer
datasets:
  - Leonel-Maia/ewe_dataset
metrics:
  - wer
model-index:
  - name: whisper-small-tf
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Leonel-Maia/ewe_dataset
          type: Leonel-Maia/ewe_dataset
        metrics:
          - name: Wer
            type: wer
            value: 0.3810818307905687

whisper-small-tf

This model is a fine-tuned version of Leonel-Maia/fongbe-whisper-small on the Leonel-Maia/ewe_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4403
  • Wer: 0.3811

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 60.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4849 1.7564 500 0.4948 0.4388
0.3147 3.5101 1000 0.4403 0.3811
0.1881 5.2639 1500 0.4694 0.3843
0.124 7.0176 2000 0.5287 0.3952
0.05 8.7740 2500 0.6124 0.4024
0.0166 10.5277 3000 0.6773 0.3989
0.0083 12.2814 3500 0.7468 0.4017

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.7.0+cu126
  • Datasets 3.5.0
  • Tokenizers 0.21.1