File size: 5,750 Bytes
2b4f484
 
 
 
44a52df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b4f484
 
44a52df
2b4f484
44a52df
 
2b4f484
44a52df
2b4f484
44a52df
2b4f484
44a52df
 
 
 
2b4f484
 
 
44a52df
2b4f484
44a52df
 
 
 
 
 
 
 
 
 
2b4f484
 
 
44a52df
2b4f484
44a52df
 
 
 
 
2b4f484
44a52df
2b4f484
44a52df
2b4f484
44a52df
 
 
 
 
 
 
 
2b4f484
44a52df
 
 
 
2b4f484
 
 
44a52df
2b4f484
44a52df
 
 
 
 
 
2b4f484
 
 
44a52df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b4f484
44a52df
 
 
2b4f484
44a52df
 
2b4f484
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170




---
language:
  - en
license: apache-2.0
library_name: transformers
pipeline_tag: text-generation
base_model: Qwen/Qwen1.5-1.8B-Chat
tags:
  - emotions
  - vad
  - dialogue
  - multi-label
  - empathy
  - psychology
  - evaluation
datasets:
  - OpenDataLab/DailyDialog
  - goemotions
  - empathetic_dialogues
model-index:
  - name: Emoloom-2B
    results:
      - task:
          type: text-classification
          name: Multi-label Emotion + VAD (in-text JSON)
        dataset:
          name: Mixed (GoEmotions + Empathetic Dialogues)
          type: custom
        metrics:
          - type: macro_f1
            value: 0.350
          - type: macro_precision
            value: 0.500
          - type: macro_recall
            value: 0.269
          - type: vad_1_minus_rmse
            value: 0.942
          - type: parse_ok
            value: 1.000
      - task:
          type: zero-shot-eval
          name: Cross-corpus Quick Eval (DailyDialog)
        dataset:
          name: OpenDataLab/DailyDialog
          type: dialog
        metrics:
          - type: macro_f1
            value: 0.307
          - type: vad_1_minus_rmse
            value: 0.807
          - type: parse_ok
            value: 0.976
---

# Emoloom-2B

**Emoloom-2B** is a ~2B-parameter emotion understanding model that outputs **multi-label emotion categories** and **continuous VAD** (Valence, Arousal, Dominance) for dialogue utterances. It is fine-tuned from **Qwen/Qwen1.5-1.8B-Chat** with SFT on a curated mix of GoEmotions and Empathetic Dialogues, plus consistency constraints to keep JSON outputs robust and parsing-friendly.

> Output format (single line JSON):
> `{"labels": ["sad","anxious"], "vad": {"v": 0.42, "a": 0.31, "d": 0.28}, "rationale": "short evidence"}`

---

## ✨ Highlights

- **Dual signal**: multi-label categories + continuous VAD in \[0,1], two decimals.
- **Robust JSON**: training disables KV cache during generation for consistent formatting.
- **Long-tail focus**: sampling and weak-label cleanup reduce “mode collapse” onto majority classes.
- **Paper-ready figures**: bundled plotting code exports high-res bar/radar/CI-band PNGs.

---

## 📊 Results (dev & cross-corpus)

| Exp                        | Macro-F1 | Macro-P | Macro-R | VAD(1-RMSE) | ParseOK | n(dev) |
|---------------------------:|:--------:|:-------:|:-------:|:-----------:|:-------:|-------:|
| `sft_qwen_mix2080`         | **0.3500** | 0.5000 | 0.2693 | **0.9417**  | 1.000   | 3663   |
| `sft_qwen_mix5050`         | 0.3470   | 0.5000 | 0.2657 | 0.9337      | 1.000   | 3309   |
| `sft_qwen_mix8020`         | 0.3341   | 0.5000 | 0.2509 | 0.9135      | 1.000   | 2068   |
| `sft_qwen_mix2080_dd_quick` (DailyDialog, quick) | 0.3071 | 0.5000 | 0.2136 | 0.8066 | 0.976 | 6261 |

Notes:
- `ParseOK` = fraction of generations that are valid, one-line JSON.
- VAD score is reported as **1 − RMSE** (higher is better).

---

## 🧠 Model Details

- **Base**: `Qwen/Qwen1.5-1.8B-Chat`
- **Size**: ~1.8B params
- **Architecture**: causal decoder-only transformer
- **Precision**: BF16 training, eval in BF16/FP16/FP32 fallback
- **Tokenizer**: Qwen tokenizer (pad set to EOS if missing)

---

## 🧾 Training Data & Processing

- **Sources**: GoEmotions (multi-label), Empathetic Dialogues (dialogue empathy).
- **Mixing**: ratios explored (20:80, 50:50, 80:20); **20:80** gave the best trade-off.
- **QC**: remove toxic/unclear; enforce min VAD confidence; short rationale template.
- **Target JSON**: `{labels, vad:{v,a,d}, rationale}` with two-decimal VAD.

---

## ⚙️ Fine-tuning Setup (SFT)

- **Max length**: typically 1024–1536 tokens (adaptive truncation for stability)
- **Batch**: micro-batch 1, gradient accumulation up to 128 (OOM-safe)
- **LR**: ~1.2e-5 cosine decay, warmup ~3%
- **Stability**: gradient checkpointing; `use_cache=False` at train/eval

---

## ✅ Evaluation

- Prompts build a short **system** + **user** pair (context + utterance).
- Greedy decode, max_new_tokens ~196 (quick eval uses 48).
- Metrics:
  - Multi-label **Macro-F1 / P / R** on gold label space
  - VAD **1−RMSE** on \[v,a,d]
  - **ParseOK** for JSON validity

---

## 🚀 Usage

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import json, torch

name = "Lixeeone/Emoloom-2B"
tok = AutoTokenizer.from_pretrained(name, trust_remote_code=True, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)
if tok.pad_token_id is None:
    tok.pad_token = tok.eos_token
model.config.use_cache = False  # keep output format stable

context = "We argued last night but made up this morning."
utterance = "I’m still a bit shaken though."

sys = ("You are an empathetic assistant. Identify emotion labels (multi-label) "
       "and estimate VAD (Valence, Arousal, Dominance in [0,1]). Respond with STRICT one-line JSON only.")
usr = (
    "Task: Read the text and provide emotion labels and VAD with two decimals, plus a brief rationale (<=30 words).\n"
    "Return JSON ONLY, single line:\n"
    '{{"labels": [...], "vad": {{"v": 0.00, "a": 0.00, "d": 0.00}}, "rationale": "..."}}\n'
    f"Context: {context}\n"
    f'Text: "{utterance}"'
)

msgs = [{"role":"system","content":sys},{"role":"user","content":usr}]
prompt = tok.apply_chat_template(msgs, tokenize=False, add_generation_prompt=True)
inp = tok(prompt, return_tensors="pt").to(model.device)

with torch.no_grad():
    out = model.generate(**inp, max_new_tokens=128, do_sample=False, use_cache=False)
gen = tok.decode(out[0][inp["input_ids"].shape[1]:], skip_special_tokens=True)

pred = json.loads(gen)  # {"labels":[...], "vad":{"v":..,"a":..,"d":..}, "rationale": "..."}
print(pred)