Feature Extraction
Transformers
PyTorch
English
Chinese
UniViTAR-0.3B / modeling_univitar.py
LimengQiao's picture
add: UniViTAR models
a15d355
from typing import Iterable, Optional, Tuple, Union, List
import os
import math
import json
import torch
import numpy as np
import torch.nn as nn
import torch.utils.checkpoint
import torch.nn.functional as F
from PIL import Image
from einops import rearrange
from functools import partial
from timm.layers import DropPath
from dataclasses import dataclass
from torchvision import transforms
from transformers.utils import logging
from transformers.activations import ACT2FN
from transformers.modeling_utils import PreTrainedModel
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import BaseModelOutput, ModelOutput
from flash_attn.bert_padding import pad_input
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
logger = logging.get_logger(__name__)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
orig_dtype = tensor.dtype
tensor = tensor.float()
cos = freqs.cos()
sin = freqs.sin()
cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
output = (tensor * cos) + (rotate_half(tensor) * sin)
output = output.to(orig_dtype)
return output
class VisionRotaryEmbedding2D(nn.Module):
def __init__(self, dim: int, theta: float = 10000.0) -> None:
super().__init__()
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
def forward_(self, seqlen: int) -> torch.Tensor:
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
freqs = torch.outer(seq, self.inv_freq)
return freqs
def forward(self, grid_shapes, spatial_merge_size=2):
pos_ids = []
s = spatial_merge_size
for t, h, w in grid_shapes:
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
hpos_ids = hpos_ids.reshape(h // s, s, w // s, s)
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
hpos_ids = hpos_ids.flatten()
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
wpos_ids = wpos_ids.reshape(h // s, s, w // s, s)
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
wpos_ids = wpos_ids.flatten()
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = torch.tensor(grid_shapes).max()
rotary_pos_emb_full = self.forward_(max_grid_size)
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
return rotary_pos_emb
class FlashAttention(nn.Module):
# https://github.com/Dao-AILab/flash-attention/blob/v0.2.8/flash_attn/flash_attention.py
"""Implement the scaled dot product attention with softmax.
Arguments
---------
softmax_scale: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
super().__init__()
self.softmax_scale = softmax_scale
self.dropout_p = attention_dropout
self._deterministic = True
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
max_s=None, need_weights=False):
"""Implements the multihead softmax attention.
Arguments
---------
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
if unpadded: (nnz, 3, h, d)
key_padding_mask: a bool tensor of shape (B, S)
"""
assert not need_weights
assert qkv.dtype in [torch.float16, torch.bfloat16]
assert qkv.is_cuda
if cu_seqlens is None:
batch_size = qkv.shape[0]
seqlen = qkv.shape[1]
if key_padding_mask is None:
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
max_s = seqlen
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
device=qkv.device)
output = flash_attn_unpadded_qkvpacked_func(
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
softmax_scale=self.softmax_scale, causal=causal
)
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
else:
qkv = qkv.squeeze() # [1, n, h, d] -> [n, h, d]
seqlens_in_batch = key_padding_mask.sum(dim=-1, dtype=torch.int32)
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
output = flash_attn_unpadded_qkvpacked_func(
qkv, cu_seqlens, max_seqlen_in_batch, self.dropout_p if self.training else 0.0,
softmax_scale=self.softmax_scale, causal=causal, deterministic=self._deterministic
)
output = output.unsqueeze(0)
else:
assert max_s is not None
output = flash_attn_unpadded_qkvpacked_func(
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
softmax_scale=self.softmax_scale, causal=causal
)
return output, None
class RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
try:
from apex.normalization import FusedRMSNorm
RMSNorm = FusedRMSNorm # noqa
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of RMSNorm')
except ImportError: # using the normal RMSNorm
pass
except Exception:
logger.warning('discovered apex but it failed to load, falling back to RMSNorm')
pass
@dataclass
class BaseModelOutputWithKwargs(ModelOutput):
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
kwargs: Optional[dict] = None
class UniViTARVisionConfig(PretrainedConfig):
def __init__(
self,
resolution_mode="native",
init_method="xavier",
num_channels=3,
patch_size=14,
temporal_patch_size=2,
image_size=1792,
patch_dropout=0.0,
attention_dropout=0.0,
dropout=0.0,
drop_path_rate=0.0,
initializer_range=1e-10,
num_hidden_layers=24,
num_attention_heads=16,
hidden_size=1024,
intermediate_size=4224,
patch_embedding_bias=True,
qk_normalization=True,
qkv_bias=False,
initializer_factor=0.1,
use_pre_norm=False,
pe_type="rope2d",
rope_theta=10000,
spatial_merge_size=1,
norm_type="RMSNorm",
hidden_act='SwiGLU',
use_flash_attn=True,
layer_norm_eps=1e-6,
min_tokens=576,
max_tokens=16384,
image_mean=(0.485, 0.456, 0.406),
image_std=(0.229, 0.224, 0.225),
relarge_ratio=1.0,
**kwargs,
):
super().__init__(**kwargs)
self.resolution_mode = resolution_mode
self.init_method = init_method
self.pe_type = pe_type
self.rope_theta = rope_theta
self.temporal_patch_size = temporal_patch_size
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.patch_dropout = patch_dropout
self.attention_dropout = attention_dropout
self.dropout = dropout
self.drop_path_rate = drop_path_rate
self.initializer_range = initializer_range
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.patch_embedding_bias = patch_embedding_bias
self.qk_normalization = qk_normalization
self.qkv_bias = qkv_bias
self.initializer_factor = initializer_factor
self.use_pre_norm = use_pre_norm
self.norm_type = norm_type
self.hidden_act = hidden_act
self.use_flash_attn = use_flash_attn
self.layer_norm_eps = layer_norm_eps
self.spatial_merge_size = spatial_merge_size
self.min_tokens = min_tokens
self.max_tokens = max_tokens
self.image_mean = image_mean
self.image_std = image_std
self.relarge_ratio = relarge_ratio
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
if 'vision_config' in config_dict:
config_dict = config_dict['vision_config']
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
)
return cls.from_dict(config_dict, **kwargs)
class UniViTARImageTransform(object):
def __init__(self, config):
self.config = config
self.resolution_mode = config.resolution_mode
self.image_mean, self.image_std = config.image_mean, config.image_std
self.patch_size = config.patch_size
self.temporal_patch_size = config.temporal_patch_size
self.spatial_merge_size = config.spatial_merge_size
self.resize_factor = config.patch_size * config.spatial_merge_size * config.resize_factor
self.relarge_ratio = config.relarge_ratio
self.forced_transform = None
self.min_pixels, self.max_pixels = None, None
assert self.resolution_mode in ["native", "224", "378", "756"]
if self.resolution_mode == "native":
self.min_pixels = config.min_tokens * config.patch_size * config.patch_size
self.max_pixels = config.max_tokens * config.patch_size * config.patch_size
else:
image_size = int(self.resolution_mode)
self.forced_transform = transforms.Compose([
transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.BICUBIC),
self.convert_to_rgb,
transforms.ToTensor(),
transforms.Normalize(mean=self.image_mean, std=self.image_std)
]
)
def __call__(self, images):
if not isinstance(images, List):
images = [images] # shape of each image is [h, w, c]
assert len(images) == 1 or len(images) % self.temporal_patch_size == 0
if self.resolution_mode == "native":
sample_num = 1 if len(images) == 1 else len(images) // self.temporal_patch_size
min_pixels, max_pixels = self.min_pixels // sample_num, self.max_pixels // sample_num
width, height = images[0].size # (w, h)
if self.relarge_ratio > 0 and self.relarge_ratio != 1:
height, width = int(height * self.relarge_ratio), int(width * self.relarge_ratio)
resized_height, resized_width = self.smart_resize(height, width, self.resize_factor, min_pixels, max_pixels)
processed_images = []
for image in images:
image = self.convert_to_rgb(image)
image = self.resize(image, size=(resized_height, resized_width), resample=Image.Resampling.BICUBIC)
image = self.rescale(image, scale=1/255)
image = self.normalize(image=image, mean=self.image_mean, std=self.image_std)
processed_images.append(image)
processed_images = np.array(processed_images) # (num, h, w, c)
processed_images = processed_images.transpose(0, 3, 1, 2) # (num, c, h, w)
else:
processed_images = [self.forced_transform(image).numpy() for image in images]
processed_images = np.array(processed_images)
if processed_images.shape[0] == 1:
processed_images = np.tile(processed_images, (self.temporal_patch_size, 1, 1, 1))
return torch.from_numpy(processed_images)
@staticmethod
def convert_to_rgb(image):
if not isinstance(image, Image.Image):
return image
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
# for transparent images. The call to `alpha_composite` handles this case
if image.mode == "RGB":
return image
image_rgba = image.convert("RGBA")
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
alpha_composite = Image.alpha_composite(background, image_rgba)
alpha_composite = alpha_composite.convert("RGB")
return alpha_composite
@staticmethod
def resize(image, size, resample, return_numpy: bool = True) -> np.ndarray:
"""
Resizes `image` to `(height, width)` specified by `size` using the PIL library.
"""
if not len(size) == 2:
raise ValueError("size must have 2 elements")
assert isinstance(image, Image.Image)
height, width = size
resample = resample if resample is not None else Image.Resampling.BILINEAR
# PIL images are in the format (width, height)
resized_image = image.resize((width, height), resample=resample, reducing_gap=None)
if return_numpy:
resized_image = np.array(resized_image)
resized_image = np.expand_dims(resized_image, axis=-1) if resized_image.ndim == 2 else resized_image
return resized_image
@staticmethod
def rescale(image: np.ndarray, scale: float, dtype: np.dtype = np.float32) -> np.ndarray:
if not isinstance(image, np.ndarray):
raise TypeError(f"Input image must be of type np.ndarray, got {type(image)}")
rescaled_image = image * scale
rescaled_image = rescaled_image.astype(dtype)
return rescaled_image
@staticmethod
def normalize(image, mean, std) -> np.ndarray:
"""
Normalizes `image` using the mean and standard deviation specified by `mean` and `std`.
image = (image - mean) / std
"""
if not isinstance(image, np.ndarray):
raise ValueError("image must be a numpy array")
num_channels = image.shape[-1]
# We cast to float32 to avoid errors that can occur when subtracting uint8 values.
# We preserve the original dtype if it is a float type to prevent upcasting float16.
if not np.issubdtype(image.dtype, np.floating):
image = image.astype(np.float32)
if isinstance(mean, Iterable):
if len(mean) != num_channels:
raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(mean)}")
else:
mean = [mean] * num_channels
mean = np.array(mean, dtype=image.dtype)
if isinstance(std, Iterable):
if len(std) != num_channels:
raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(std)}")
else:
std = [std] * num_channels
std = np.array(std, dtype=image.dtype)
image = (image - mean) / std
return image
@staticmethod
def smart_resize(height, width, factor, min_pixels, max_pixels):
"""
1. Both dimensions (height and width) are divisible by 'factor'.
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
3. The aspect ratio of the image is maintained as closely as possible.
"""
if height < factor or width < factor:
if height < factor:
ratio = factor / height
height, width = factor, int(ratio * width) + 1
if width < factor:
ratio = factor / width
width, height = factor, int(ratio * height) + 1
h_bar = round(height / factor) * factor
w_bar = round(width / factor) * factor
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = math.floor(height / beta / factor) * factor
w_bar = math.floor(width / beta / factor) * factor
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = math.ceil(height * beta / factor) * factor
w_bar = math.ceil(width * beta / factor) * factor
return h_bar, w_bar
class SwiGLU(nn.Module):
def __init__(self, config: UniViTARVisionConfig):
super().__init__()
self.config = config
self.inner_hidden_size = int(config.intermediate_size * 2 / 3)
self.act = ACT2FN['silu']
self.fc1 = nn.Linear(config.hidden_size, self.inner_hidden_size)
self.fc2 = nn.Linear(self.inner_hidden_size, config.hidden_size)
self.fc3 = nn.Linear(config.hidden_size, self.inner_hidden_size)
self.norm = RMSNorm(self.inner_hidden_size, eps=config.layer_norm_eps)
def forward(self, x: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(x)
hidden_states = self.act(hidden_states)
hidden_states = self.fc2(self.norm(hidden_states * self.fc3(x)))
return hidden_states
class Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: UniViTARVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
assert config.use_flash_attn is True, "FlashAttention must be used!"
assert self.head_dim * self.num_heads == self.embed_dim
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
self.proj_drop = nn.Dropout(config.dropout)
if self.config.qk_normalization:
self.q_norm = RMSNorm(self.embed_dim, eps=config.layer_norm_eps)
self.k_norm = RMSNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor, **kwargs) -> torch.Tensor:
key_padding_mask = kwargs.get("key_padding_mask", None)
rotary_pos_emb = kwargs["rotary_pos_emb"]
qkv = self.qkv(hidden_states)
qkv = rearrange(qkv, '... (three h d) -> ... three h d', three=3, h=self.num_heads)
bind_dim = qkv.dim() - 3
target_dtype = qkv.dtype
q, k, v = qkv.unbind(bind_dim)
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
if self.config.qk_normalization:
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
qkv = torch.stack([q, k, v], dim=bind_dim).to(target_dtype)
context, _ = self.inner_attn(qkv, key_padding_mask=key_padding_mask, causal=False)
outs = self.proj(rearrange(context, '... h d -> ... (h d)')) # input expected to be: [b s h d] or [s h d]
outs = self.proj_drop(outs)
return outs
class UniViTARVisionEmbeddings(nn.Module):
def __init__(self, config: UniViTARVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.patch_size = config.patch_size
self.temporal_patch_size = config.temporal_patch_size
self.kernel_size = [self.temporal_patch_size, self.patch_size, self.patch_size]
self.use_bias = config.patch_embedding_bias
self.patch_embedding = nn.Conv3d(
in_channels=3, out_channels=self.embed_dim, kernel_size=self.kernel_size, stride=self.kernel_size, bias=self.use_bias)
def forward(self, pixel_values: torch.FloatTensor, **kwargs) -> torch.Tensor:
pixel_values = pixel_values.view(-1, 3, *self.kernel_size)
patch_embeds = self.patch_embedding(pixel_values)
embeddings = patch_embeds.view(1, -1, self.embed_dim)
self.num_patches = embeddings.shape[1]
return embeddings
class UniViTARVisionEncoderLayer(nn.Module):
def __init__(self, config: UniViTARVisionConfig, drop_path_rate: float):
super().__init__()
self.embed_dim = config.hidden_size
assert config.hidden_act == "SwiGLU"
self.attn = Attention(config)
self.norm1 = RMSNorm(self.embed_dim, eps=config.layer_norm_eps)
self.norm2 = RMSNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = SwiGLU(config)
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
def forward(self, hidden_states: torch.Tensor, **kwargs):
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states), **kwargs) * self.ls1)
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
return hidden_states
class UniViTARVisionEncoder(nn.Module):
""" Transformer encoder consisting of `config.num_hidden_layers` self attention layers. """
def __init__(self, config: UniViTARVisionConfig):
super().__init__()
self.config = config
self.gradient_checkpointing = True
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
self.layers = nn.ModuleList([UniViTARVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
if self.config.pe_type == "rope2d":
head_dim = config.hidden_size // config.num_attention_heads
self.rotary_pos_emb = VisionRotaryEmbedding2D(head_dim // 2, theta=self.config.rope_theta)
else:
raise NotImplementedError
def forward(self, inputs_embeds, output_hidden_states = False, **kwargs):
kwargs["rotary_pos_emb"] = self.rotary_pos_emb(kwargs["grid_shapes"], self.config.spatial_merge_size)
encoder_states = () if output_hidden_states else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
encoder_layer_forward = partial(encoder_layer, **kwargs)
layer_outputs = torch.utils.checkpoint.checkpoint(encoder_layer_forward, hidden_states, use_reentrant=True)
else:
layer_outputs = encoder_layer(hidden_states, **kwargs)
hidden_states = layer_outputs
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
return BaseModelOutputWithKwargs(last_hidden_state=hidden_states, hidden_states=encoder_states, kwargs=kwargs)
class UniViTARVisionModel(PreTrainedModel):
main_input_name = 'pixel_values'
config_class = UniViTARVisionConfig
_no_split_modules = ['UniViTARVisionEncoderLayer']
def __init__(self, model_config_path, *args, **kwargs):
model_config_dict = json.load(open(model_config_path, "r", encoding="utf8"))
config = UniViTARVisionConfig.from_dict(model_config_dict)
super().__init__(config)
self.config = config
self.image_transform = UniViTARImageTransform(config)
self.embeddings = UniViTARVisionEmbeddings(config)
self.encoder = UniViTARVisionEncoder(config)
def get_input_embeddings(self):
return self.embeddings
def get_padding_mask(self, grid_shapes):
seq_len = torch.tensor([int((np.prod(thw) - 1) + 1) for thw in grid_shapes])
max_len = torch.max(seq_len)
batch_size = len(grid_shapes)
mask = torch.zeros((batch_size, max_len), dtype=torch.long)
range_matrix = torch.arange(max_len).expand(batch_size, max_len)
mask = (range_matrix < seq_len.unsqueeze(1))
return mask.cuda()
def forward(self, pixel_values, output_hidden_states = False, **kwargs):
assert len(pixel_values.shape) == 2, "(batch_num_tokens, hidden_size)"
assert "grid_shapes" in kwargs, "grid_shapes: [(t, h, w), ..., (t, h, w)]"
kwargs["key_padding_mask"] = self.get_padding_mask(kwargs["grid_shapes"])
hidden_states = self.embeddings(pixel_values, **kwargs)
encoder_outputs = self.encoder(hidden_states, output_hidden_states, **kwargs)
last_hidden_state = encoder_outputs.last_hidden_state
return last_hidden_state.squeeze(0)
def data_patchify(self, input_data):
t, c, h, w = input_data.shape
grid_t, grid_h, grid_w = t // self.config.temporal_patch_size, h // self.config.patch_size, w // self.config.patch_size
grid_size = c * self.config.temporal_patch_size * self.config.patch_size * self.config.patch_size
input_data = input_data.reshape(
grid_t, self.config.temporal_patch_size, c,
grid_h // self.config.spatial_merge_size, self.config.spatial_merge_size, self.config.patch_size,
grid_w // self.config.spatial_merge_size, self.config.spatial_merge_size, self.config.patch_size
)
input_data = input_data.permute(0, 3, 6, 4, 7, 2, 1, 5, 8)
input_data = input_data.reshape(grid_t * grid_h * grid_w, grid_size).contiguous()
grid_shape = (grid_t, grid_h, grid_w)
return input_data, grid_shape