|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:1567 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: nomic-ai/modernbert-embed-base |
|
widget: |
|
- source_sentence: How many authors are listed for the trial? |
|
sentences: |
|
- 'chemotherapy and bone marrow transplantation for certain malignancies and has |
|
a long track |
|
|
|
record of safe use in adults and children. The incidence of adverse events such |
|
as fever, chills, |
|
|
|
bone pain, dyspnea, tachycardia, and hemodynamic instability was no different |
|
between GM- |
|
|
|
CSF and placebo-treated groups in controlled adult BMT studies. Rapid IV administration |
|
of' |
|
- 'clinical ICU staff in accordance with institutional practice and judgment. |
|
|
|
Child Assent Subjects who are eligible for this study will be critically ill, |
|
and child assent is |
|
|
|
typically not possible at the time of study enrollment. However, during follow |
|
up after discharge |
|
|
|
from the ICU, issues about assent become applicable. Children who are capable |
|
of giving assent' |
|
- 'Controlled Phase 2 Trial. Stroke, 49(5):1210–1216, 2018. |
|
|
|
[76] M. K. R. Somagutta, M. K. Lourdes Pormento, P. Hamid, A. Hamdan, M. A. Khan, |
|
|
|
R. Desir, R. Vijayan, S. Shirke, R. Jeyakumar, Z. Dogar, S. S. Makkar, P. Guntipalli, |
|
|
|
N. N. Ngardig, M. S. Nagineni, T. Paul, E. Luvsannyam, C. Riddick, and M. A. Sanchez-' |
|
- source_sentence: What type of event can lead to the suspension of enrollment in |
|
the study? |
|
sentences: |
|
- 'and data generated by this study must be available for inspection upon request |
|
by representatives |
|
|
|
(when applicable) of the Food and Drug Administration (FDA), NIH, other Federal |
|
funders or |
|
|
|
study sponsors, and the Institutional Review Board (IRB) for each study site. |
|
|
|
9 Protection of Human Subjects |
|
|
|
9.1 Risks to Human Subjects |
|
|
|
9.1.1 Human Subjects Involvement and Characteristics' |
|
- 'two consecutive days while receiving study drug, the drug will be discontinued. |
|
|
|
Adverse events will be monitored as described in Section 10.2.6 on page 61. The |
|
medical |
|
|
|
monitor has the authority to suspend enrollment in the event of an unexpected, |
|
study-related |
|
|
|
serious adverse event that is judged to change the risk/benefit of subject participation.' |
|
- 'innate immune system is common and measurable in pediatric sepsis. Innate immune |
|
cells such |
|
|
|
as monocytes and neutrophils serve critical functions including migration to sites |
|
of infection, |
|
|
|
phagocytosis of pathogens, promotion of microbial killing, antigen presentation, |
|
and production |
|
|
|
of immunomodulatory cytokines. We have repeatedly shown that severe reduction |
|
in the ability' |
|
- source_sentence: When will the reviews start? |
|
sentences: |
|
- 'mg/kg/day given for three days by continuous infusion was used.23, 63 Despite |
|
its apparent safety |
|
|
|
in adults, this dose is substantially higher than what has been used in children |
|
with HLH/MAS |
|
|
|
or adults with COVID-19. |
|
|
|
In the largest (to date) published study of anakinra in hospitalized, hyper-inflamed |
|
adults |
|
|
|
with COVID-19 (N=392), a dose of 10 mg/kg/day IV divided every 12 hours (infused |
|
over 1' |
|
- 'data are required for Federal reporting purposes to delineate subject accrual |
|
by race, ethnicity, |
|
|
|
and gender. |
|
|
|
For purposes of the DCC handling potential protected health information (PHI) |
|
and pro- |
|
|
|
ducing the de–identified research data sets that will be used for analyses, all |
|
study sites have |
|
|
|
been offered a Business Associate Agreement with the University of Utah. Copies |
|
of executed' |
|
- 'empirically whether these patients differ from those remaining in the study for |
|
the scheduled |
|
|
|
treatment and follow-up time. Missingness for primary, secondary, exploratory, |
|
and safety |
|
|
|
outcomes will be reviewed in aggregate and by site. Reviews will start as soon |
|
as enrollment |
|
|
|
opens and will be regulatory monitored so missing data problems can be addressed |
|
early in the |
|
|
|
study.' |
|
- source_sentence: What type of results will be communicated to the Data Coordinating |
|
Center and clinical site investigator? |
|
sentences: |
|
- 'ing of a medical condition that was present at the time of randomization will |
|
be considered a |
|
|
|
new adverse event and reported. |
|
|
|
After patient randomization all adverse events (including serious adverse events) |
|
will be |
|
|
|
recorded according to relatedness, severity, and expectedness, as well as their |
|
duration and' |
|
- '12.2 Health Insurance Portability and Accountability Act |
|
|
|
Data elements collected include the date of birth and date of admission. Prior |
|
to statistical |
|
|
|
analyses, dates will be used to calculate patient age at the time of the study |
|
events. |
|
|
|
Data elements for race, ethnicity, and gender are also being collected. These |
|
demographic' |
|
- 'The Collaborative Pediatric Critical Care Research NetworkPage 34 of 76 Protocol |
|
90 (Hall, Zuppa and Mourani) |
|
|
|
4.5 Randomization |
|
|
|
Upon determination of a subject’s immunophenotype, Dr. Hall or his designee will |
|
notify the |
|
|
|
Data Coordinating Center and the clinical site investigator of the laboratory |
|
results. Subjects' |
|
- source_sentence: What age groups will be enrolled in the study? |
|
sentences: |
|
- 'have mild to moderate inflammation (i.e. a serum ferritin level <2,000 ng/ml) |
|
from the TRIPS |
|
|
|
trial. Those subjects will be instead entered into a completely distinct clinical |
|
trial of immune |
|
|
|
stimulation with GM-CSF (GRACE-2) that is covered by a separate IND (#112277). |
|
|
|
PRECISE Protocol Version 1.07 |
|
|
|
Protocol Version Date: June 16, 2023' |
|
- 'Subject Population to be Studied Participating sites will enroll infants, children |
|
and adoles- |
|
|
|
cent patients who are admitted to a Pediatric or Cardiac Intensive Care Unit with |
|
sepsis-induced |
|
|
|
multiple organ dysfunction syndrome (MODS). The goal is to determine if personalized |
|
im- |
|
|
|
munomodulation is an effective strategy to reduce mortality and morbidity from |
|
sepsis-induced' |
|
- 'Loosdregt, N. M. Wulffraat, S. de Roock, and S. J. Vastert. Treatment to target |
|
using |
|
|
|
recombinant interleukin-1 receptor antagonist as first-line monotherapy in new-onset |
|
|
|
systemic juvenile idiopathic arthritis: Results from a five-year follow-up study. |
|
Arthritis |
|
|
|
Rheumatol, 71(7):1163–1173, 2019. |
|
|
|
[78] R. K. Thakkar, R. Devine, J. Popelka, J. Hensley, R. Fabia, J. A. Muszynski, |
|
and M. W.' |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
model-index: |
|
- name: Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB) |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.5714285714285714 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7828571428571428 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8114285714285714 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.8742857142857143 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.5714285714285714 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2609523809523809 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.16228571428571423 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08742857142857141 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.5714285714285714 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7828571428571428 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8114285714285714 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.8742857142857143 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7304617900805063 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6836485260770975 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.6898282619821292 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.5485714285714286 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7885714285714286 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8285714285714286 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.8685714285714285 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.5485714285714286 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2628571428571428 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.16571428571428568 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08685714285714283 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.5485714285714286 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7885714285714286 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8285714285714286 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.8685714285714285 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7172419802927883 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6675759637188208 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.6741729815259775 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.5485714285714286 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.76 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.84 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9085714285714286 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.5485714285714286 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2533333333333333 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.16799999999999995 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09085714285714283 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.5485714285714286 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.76 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.84 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9085714285714286 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7268936400245406 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6687596371882085 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.6719911574054431 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.49142857142857144 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7028571428571428 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.7885714285714286 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.8685714285714285 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.49142857142857144 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.23428571428571424 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.15771428571428567 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08685714285714284 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.49142857142857144 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7028571428571428 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.7885714285714286 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.8685714285714285 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.6778419592624233 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6168730158730158 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.6219971103464577 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.38285714285714284 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.5714285714285714 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.6571428571428571 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.7885714285714286 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.38285714285714284 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.19047619047619044 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.1314285714285714 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.07885714285714283 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.38285714285714284 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.5714285714285714 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.6571428571428571 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.7885714285714286 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.5697625172066919 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.5015079365079367 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.5090522718083348 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB) |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision d556a88e332558790b210f7bdbe87da2fa94a8d8 --> |
|
- **Maximum Sequence Length:** 1024 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("Mdean77/modernbert-embed-quickb") |
|
# Run inference |
|
sentences = [ |
|
'What age groups will be enrolled in the study?', |
|
'Subject Population to be Studied Participating sites will enroll infants, children and adoles-\ncent patients who are admitted to a Pediatric or Cardiac Intensive Care Unit with sepsis-induced\nmultiple organ dysfunction syndrome (MODS). The goal is to determine if personalized im-\nmunomodulation is an effective strategy to reduce mortality and morbidity from sepsis-induced', |
|
'have mild to moderate inflammation (i.e. a serum ferritin level <2,000 ng/ml) from the TRIPS\ntrial. Those subjects will be instead entered into a completely distinct clinical trial of immune\nstimulation with GM-CSF (GRACE-2) that is covered by a separate IND (#112277).\nPRECISE Protocol Version 1.07\nProtocol Version Date: June 16, 2023', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
|
|
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 | |
|
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------| |
|
| cosine_accuracy@1 | 0.5714 | 0.5486 | 0.5486 | 0.4914 | 0.3829 | |
|
| cosine_accuracy@3 | 0.7829 | 0.7886 | 0.76 | 0.7029 | 0.5714 | |
|
| cosine_accuracy@5 | 0.8114 | 0.8286 | 0.84 | 0.7886 | 0.6571 | |
|
| cosine_accuracy@10 | 0.8743 | 0.8686 | 0.9086 | 0.8686 | 0.7886 | |
|
| cosine_precision@1 | 0.5714 | 0.5486 | 0.5486 | 0.4914 | 0.3829 | |
|
| cosine_precision@3 | 0.261 | 0.2629 | 0.2533 | 0.2343 | 0.1905 | |
|
| cosine_precision@5 | 0.1623 | 0.1657 | 0.168 | 0.1577 | 0.1314 | |
|
| cosine_precision@10 | 0.0874 | 0.0869 | 0.0909 | 0.0869 | 0.0789 | |
|
| cosine_recall@1 | 0.5714 | 0.5486 | 0.5486 | 0.4914 | 0.3829 | |
|
| cosine_recall@3 | 0.7829 | 0.7886 | 0.76 | 0.7029 | 0.5714 | |
|
| cosine_recall@5 | 0.8114 | 0.8286 | 0.84 | 0.7886 | 0.6571 | |
|
| cosine_recall@10 | 0.8743 | 0.8686 | 0.9086 | 0.8686 | 0.7886 | |
|
| **cosine_ndcg@10** | **0.7305** | **0.7172** | **0.7269** | **0.6778** | **0.5698** | |
|
| cosine_mrr@10 | 0.6836 | 0.6676 | 0.6688 | 0.6169 | 0.5015 | |
|
| cosine_map@100 | 0.6898 | 0.6742 | 0.672 | 0.622 | 0.5091 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 1,567 training samples |
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | |
|
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 8 tokens</li><li>mean: 15.03 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 57 tokens</li><li>mean: 90.85 tokens</li><li>max: 185 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | |
|
|:-----------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>How many terabytes of data are referenced?</code> | <code>over 125 terabytes of data.<br>Information systems are available 24/7/365 unless a scheduled maintenance period or<br>mitigation of an unexpected event is required. Critical systems availability has exceeded 99.9%<br>for the past 5 years.<br>7.2.3 Security, Support, Encryption, and Confidentiality<br>The data center coordinates the network infrastructure and security with University Information</code> | |
|
| <code>What regulation allows single parent permission for the study?</code> | <code>for their child in the study. Single parent permission is permitted under 45 CFR §46.405. The<br>parent or legal guardian will be informed about the objectives of the study and the potential<br>risks and benefits of their child’s participation. If the parent or legal guardian refuses permission<br>for their child to participate, then all clinical management will continue to be provided by the</code> | |
|
| <code>What is included in the follow-up plan for non-compliant sites?</code> | <code>planned site visits, criteria for focused visits, additional visits or remote monitoring, a plan for<br>chart review and a follow up plan for non-compliant sites. The monitoring plan also describes<br>the type of monitoring that will take place (e.g., sample of all subjects within a site; key data or<br>all data), the schedule of visits, how they are reported and a time frame to resolve any issues<br>found.</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 16 |
|
- `gradient_accumulation_steps`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 4 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `tf32`: False |
|
- `load_best_model_at_end`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 8 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 4 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: False |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |
|
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| |
|
| 1.0 | 7 | - | 0.6698 | 0.6606 | 0.6458 | 0.6146 | 0.5049 | |
|
| 1.4898 | 10 | 55.7211 | - | - | - | - | - | |
|
| 2.0 | 14 | - | 0.7210 | 0.7080 | 0.7183 | 0.6653 | 0.5621 | |
|
| 2.9796 | 20 | 26.9161 | - | - | - | - | - | |
|
| 3.0 | 21 | - | 0.7309 | 0.7172 | 0.7262 | 0.6762 | 0.5694 | |
|
| **3.4898** | **24** | **-** | **0.7305** | **0.7172** | **0.7269** | **0.6778** | **0.5698** | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.12.3 |
|
- Sentence Transformers: 3.4.1 |
|
- Transformers: 4.49.0 |
|
- PyTorch: 2.6.0 |
|
- Accelerate: 1.4.0 |
|
- Datasets: 3.3.2 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |