Meli101's picture
medbioinformatics/biobert-v1.1-text-classifier
e98995e verified
|
raw
history blame
1.9 kB
metadata
base_model: dmis-lab/biobert-v1.1
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
  - f1
model-index:
  - name: biobert-v1.1-text-classifier
    results: []

biobert-v1.1-text-classifier

This model is a fine-tuned version of dmis-lab/biobert-v1.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3062
  • Precision: 0.9119
  • Recall: 0.9097
  • Accuracy: 0.9097
  • F1: 0.9098

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall Accuracy F1
No log 1.0 154 0.3601 0.8662 0.8636 0.8633 0.8642
No log 2.0 308 0.3202 0.8942 0.8815 0.8820 0.8827
No log 3.0 462 0.2774 0.9107 0.9072 0.9072 0.9074
0.3692 4.0 616 0.3064 0.9052 0.9015 0.9015 0.9017
0.3692 5.0 770 0.3062 0.9119 0.9097 0.9097 0.9098

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2