Meli101's picture
medbioinformatics/biobert-v1.1-text-classifier
e98995e verified
|
raw
history blame
1.9 kB
---
base_model: dmis-lab/biobert-v1.1
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
- f1
model-index:
- name: biobert-v1.1-text-classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# biobert-v1.1-text-classifier
This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3062
- Precision: 0.9119
- Recall: 0.9097
- Accuracy: 0.9097
- F1: 0.9098
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:------:|
| No log | 1.0 | 154 | 0.3601 | 0.8662 | 0.8636 | 0.8633 | 0.8642 |
| No log | 2.0 | 308 | 0.3202 | 0.8942 | 0.8815 | 0.8820 | 0.8827 |
| No log | 3.0 | 462 | 0.2774 | 0.9107 | 0.9072 | 0.9072 | 0.9074 |
| 0.3692 | 4.0 | 616 | 0.3064 | 0.9052 | 0.9015 | 0.9015 | 0.9017 |
| 0.3692 | 5.0 | 770 | 0.3062 | 0.9119 | 0.9097 | 0.9097 | 0.9098 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2