Mungert's picture
Upload README.md with huggingface_hub
616291b verified
---
license: llama3.2
language:
- en
- zh
base_model:
- meta-llama/Llama-3.2-3B
- lianghsun/Llama-3.2-3B-F1-Base
library_name: transformers
tags:
- Taiwan
- R.O.C
- zhtw
- SLM
- Llama-32
datasets:
- lianghsun/tw-reasoning-instruct
- minyichen/tw-instruct-R1-200k
- minyichen/tw_mm_R1
model-index:
- name: Llama-3.2-3B-F1-Reasoning-Instruct
results:
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: tmmlu+
config: all
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 46.16
- task:
type: question-answering
name: Single Choice Question
dataset:
type: cais/mmlu
name: mmlu
config: all
split: test
revision: c30699e
metrics:
- name: single choice
type: accuracy
value: 51.22
- task:
type: question-answering
name: Single Choice Question
dataset:
type: lianghsun/tw-legal-benchmark-v1
name: tw-legal-benchmark-v1
config: all
split: test
revision: 66c3a5f
metrics:
- name: single choice
type: accuracy
value: 34.92
metrics:
- accuracy
---
# <span style="color: #7FFF7F;">Llama-3.2-3B-F1-Reasoning-Instruct GGUF Models</span>
## <span style="color: #7F7FFF;">Model Generation Details</span>
This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`064cc596`](https://github.com/ggerganov/llama.cpp/commit/064cc596ac44308dc326a17c9e3163c34a6f29d1).
## <span style="color: #7FFF7F;">Ultra-Low-Bit Quantization with IQ-DynamicGate (1-2 bit)</span>
Our latest quantization method introduces **precision-adaptive quantization** for ultra-low-bit models (1-2 bit), with benchmark-proven improvements on **Llama-3-8B**. This approach uses layer-specific strategies to preserve accuracy while maintaining extreme memory efficiency.
### **Benchmark Context**
All tests conducted on **Llama-3-8B-Instruct** using:
- Standard perplexity evaluation pipeline
- 2048-token context window
- Same prompt set across all quantizations
### **Method**
- **Dynamic Precision Allocation**:
- First/Last 25% of layers → IQ4_XS (selected layers)
- Middle 50% → IQ2_XXS/IQ3_S (increase efficiency)
- **Critical Component Protection**:
- Embeddings/output layers use Q5_K
- Reduces error propagation by 38% vs standard 1-2bit
### **Quantization Performance Comparison (Llama-3-8B)**
| Quantization | Standard PPL | DynamicGate PPL | Δ PPL | Std Size | DG Size | Δ Size | Std Speed | DG Speed |
|--------------|--------------|------------------|---------|----------|---------|--------|-----------|----------|
| IQ2_XXS | 11.30 | 9.84 | -12.9% | 2.5G | 2.6G | +0.1G | 234s | 246s |
| IQ2_XS | 11.72 | 11.63 | -0.8% | 2.7G | 2.8G | +0.1G | 242s | 246s |
| IQ2_S | 14.31 | 9.02 | -36.9% | 2.7G | 2.9G | +0.2G | 238s | 244s |
| IQ1_M | 27.46 | 15.41 | -43.9% | 2.2G | 2.5G | +0.3G | 206s | 212s |
| IQ1_S | 53.07 | 32.00 | -39.7% | 2.1G | 2.4G | +0.3G | 184s | 209s |
**Key**:
- PPL = Perplexity (lower is better)
- Δ PPL = Percentage change from standard to DynamicGate
- Speed = Inference time (CPU avx2, 2048 token context)
- Size differences reflect mixed quantization overhead
**Key Improvements:**
- 🔥 **IQ1_M** shows massive 43.9% perplexity reduction (27.46 → 15.41)
- 🚀 **IQ2_S** cuts perplexity by 36.9% while adding only 0.2GB
- ⚡ **IQ1_S** maintains 39.7% better accuracy despite 1-bit quantization
**Tradeoffs:**
- All variants have modest size increases (0.1-0.3GB)
- Inference speeds remain comparable (<5% difference)
### **When to Use These Models**
📌 **Fitting models into GPU VRAM**
**Memory-constrained deployments**
**Cpu and Edge Devices** where 1-2bit errors can be tolerated
**Research** into ultra-low-bit quantization
## **Choosing the Right Model Format**
Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**.
### **BF16 (Brain Float 16) – Use if BF16 acceleration is available**
- A 16-bit floating-point format designed for **faster computation** while retaining good precision.
- Provides **similar dynamic range** as FP32 but with **lower memory usage**.
- Recommended if your hardware supports **BF16 acceleration** (check your device's specs).
- Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32.
📌 **Use BF16 if:**
✔ Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs).
✔ You want **higher precision** while saving memory.
✔ You plan to **requantize** the model into another format.
📌 **Avoid BF16 if:**
❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower).
❌ You need compatibility with older devices that lack BF16 optimization.
---
### **F16 (Float 16) – More widely supported than BF16**
- A 16-bit floating-point **high precision** but with less of range of values than BF16.
- Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs).
- Slightly lower numerical precision than BF16 but generally sufficient for inference.
📌 **Use F16 if:**
✔ Your hardware supports **FP16** but **not BF16**.
✔ You need a **balance between speed, memory usage, and accuracy**.
✔ You are running on a **GPU** or another device optimized for FP16 computations.
📌 **Avoid F16 if:**
❌ Your device lacks **native FP16 support** (it may run slower than expected).
❌ You have memory limitations.
---
### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference**
Quantization reduces model size and memory usage while maintaining as much accuracy as possible.
- **Lower-bit models (Q4_K)****Best for minimal memory usage**, may have lower precision.
- **Higher-bit models (Q6_K, Q8_0)****Better accuracy**, requires more memory.
📌 **Use Quantized Models if:**
✔ You are running inference on a **CPU** and need an optimized model.
✔ Your device has **low VRAM** and cannot load full-precision models.
✔ You want to reduce **memory footprint** while keeping reasonable accuracy.
📌 **Avoid Quantized Models if:**
❌ You need **maximum accuracy** (full-precision models are better for this).
❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16).
---
### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)**
These models are optimized for **extreme memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint.
- **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **extreme memory efficiency**.
- **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large.
- **Trade-off**: Lower accuracy compared to higher-bit quantizations.
- **IQ3_S**: Small block size for **maximum memory efficiency**.
- **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive.
- **IQ3_M**: Medium block size for better accuracy than **IQ3_S**.
- **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting.
- **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy.
- **Use case**: Best for **low-memory devices** where **Q6_K** is too large.
- **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**.
- **Use case**: Best for **ARM-based devices** or **low-memory environments**.
---
### **Summary Table: Model Format Selection**
| Model Format | Precision | Memory Usage | Device Requirements | Best Use Case |
|--------------|------------|---------------|----------------------|---------------|
| **BF16** | Highest | High | BF16-supported GPU/CPUs | High-speed inference with reduced memory |
| **F16** | High | High | FP16-supported devices | GPU inference when BF16 isn't available |
| **Q4_K** | Medium Low | Low | CPU or Low-VRAM devices | Best for memory-constrained environments |
| **Q6_K** | Medium | Moderate | CPU with more memory | Better accuracy while still being quantized |
| **Q8_0** | High | Moderate | CPU or GPU with enough VRAM | Best accuracy among quantized models |
| **IQ3_XS** | Very Low | Very Low | Ultra-low-memory devices | Extreme memory efficiency and low accuracy |
| **Q4_0** | Low | Low | ARM or low-memory devices | llama.cpp can optimize for ARM devices |
---
## **Included Files & Details**
### `Llama-3.2-3B-F1-Reasoning-Instruct-bf16.gguf`
- Model weights preserved in **BF16**.
- Use this if you want to **requantize** the model into a different format.
- Best if your device supports **BF16 acceleration**.
### `Llama-3.2-3B-F1-Reasoning-Instruct-f16.gguf`
- Model weights stored in **F16**.
- Use if your device supports **FP16**, especially if BF16 is not available.
### `Llama-3.2-3B-F1-Reasoning-Instruct-bf16-q8_0.gguf`
- **Output & embeddings** remain in **BF16**.
- All other layers quantized to **Q8_0**.
- Use if your device supports **BF16** and you want a quantized version.
### `Llama-3.2-3B-F1-Reasoning-Instruct-f16-q8_0.gguf`
- **Output & embeddings** remain in **F16**.
- All other layers quantized to **Q8_0**.
### `Llama-3.2-3B-F1-Reasoning-Instruct-q4_k.gguf`
- **Output & embeddings** quantized to **Q8_0**.
- All other layers quantized to **Q4_K**.
- Good for **CPU inference** with limited memory.
### `Llama-3.2-3B-F1-Reasoning-Instruct-q4_k_s.gguf`
- Smallest **Q4_K** variant, using less memory at the cost of accuracy.
- Best for **very low-memory setups**.
### `Llama-3.2-3B-F1-Reasoning-Instruct-q6_k.gguf`
- **Output & embeddings** quantized to **Q8_0**.
- All other layers quantized to **Q6_K** .
### `Llama-3.2-3B-F1-Reasoning-Instruct-q8_0.gguf`
- Fully **Q8** quantized model for better accuracy.
- Requires **more memory** but offers higher precision.
### `Llama-3.2-3B-F1-Reasoning-Instruct-iq3_xs.gguf`
- **IQ3_XS** quantization, optimized for **extreme memory efficiency**.
- Best for **ultra-low-memory devices**.
### `Llama-3.2-3B-F1-Reasoning-Instruct-iq3_m.gguf`
- **IQ3_M** quantization, offering a **medium block size** for better accuracy.
- Suitable for **low-memory devices**.
### `Llama-3.2-3B-F1-Reasoning-Instruct-q4_0.gguf`
- Pure **Q4_0** quantization, optimized for **ARM devices**.
- Best for **low-memory environments**.
- Prefer IQ4_NL for better accuracy.
# <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
❤ **Please click "Like" if you find this useful!**
Help me test my **AI-Powered Network Monitor Assistant** with **quantum-ready security checks**:
👉 [Free Network Monitor](https://readyforquantum.com/dashboard/?assistant=open)
💬 **How to test**:
Choose an **AI assistant type**:
- `TurboLLM` (GPT-4o-mini)
- `HugLLM` (Hugginface Open-source)
- `TestLLM` (Experimental CPU-only)
### **What I’m Testing**
I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:
- **Function calling** against live network services
- **How small can a model go** while still handling:
- Automated **Nmap scans**
- **Quantum-readiness checks**
- **Network Monitoring tasks**
🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads):
-**Zero-configuration setup**
- ⏳ 30s load time (slow inference but **no API costs**)
- 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!
### **Other Assistants**
🟢 **TurboLLM** – Uses **gpt-4o-mini** for:
- **Create custom cmd processors to run .net code on Free Network Monitor Agents**
- **Real-time network diagnostics and monitoring**
- **Security Audits**
- **Penetration testing** (Nmap/Metasploit)
- 🔑 Get more tokens by logging in or [downloading our Free Network Monitor Agent with integrated AI Assistant](https://readyforquantum.com/download)
🔵 **HugLLM** – Latest Open-source models:
- 🌐 Runs on Hugging Face Inference API
### 💡 **Example commands to you could test**:
1. `"Give me info on my websites SSL certificate"`
2. `"Check if my server is using quantum safe encyption for communication"`
3. `"Run a comprehensive security audit on my server"`
4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Free Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution!
# Model Card for Llama-3.2-3B-F1-Reasoning-Instruct (a.k.a __Formosa-1-Reasoning__ or __F1-Reasoning__)
<div align="center" style="line-height: 1;">
<a href="https://discord.gg/Cx737yw4ed" target="_blank" style="margin: 2px;">
<img alt="Discord" src="https://img.shields.io/badge/Discord-Twinkle%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://huggingface.co/twinkle-ai" target="_blank" style="margin: 2px;">
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Twinkle%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
<div align="center" style="line-height: 1;">
<a href="https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE.txt" style="margin: 2px;">
<img alt="License" src="https://img.shields.io/badge/License-llama3.2-f5de53?&color=0081fb" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
![image/png](https://cdn-uploads.huggingface.co/production/uploads/618dc56cbc345ca7bf95f3cd/lBonfNs_7lzYguD4kJo6z.png)
<!-- Provide a quick summary of what the model is/does. -->
**Llama-3.2-3B-F1-Reasoning-Instruct**(a.k.a **Formosa-1-Reasoning** or **F1-Reasoning**) 是由 **[Twinkle AI](https://huggingface.co/twinkle-ai)****[APMIC](https://www.apmic.ai/)** 合作開發,並在[國家高速網路與計算中心](https://www.nchc.org.tw/)技術指導之下,針對中華民國台灣語境與任務需求所微調之繁體中文語言模型,涵蓋法律、教育、生活應用等多元場景,並以高指令跟隨能力為目標進行強化。
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [Liang Hsun Huang](https://huggingface.co/lianghsun)、[Min Yi Chen](https://huggingface.co/minyichen)、[Wen Bin Lin](https://huggingface.co/tedslin)、[Chao Chun Chuang](https://huggingface.co/c00cjz00) & [Dave Sung](https://huggingface.co/k1dave6412) (All authors have contributed equally to this work.)
- **Funded by:** [APMIC](https://www.apmic.ai/)
- **Model type:** LlamaForCausalLM
- **Language(s) (NLP):** Tranditional Chinese & English
- **License:** [llama3.2](https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE.txt)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** [twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct](https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct)
- **Paper:** (TBA)
- **Demo:** [Playground](https://3b02.coolify.apmic.ai/)
## Evaluation
### Results
下表採用 [🌟 Twinkle Eval](https://github.com/ai-twinkle/Eval) 評測框架
| 模型 | 評測模式 | TMMLU+(%) | 台灣法律(%) | MMLU(%) | 測試次數 | 選項排序 |
|------------------------------------|---------|----------------|----------------|----------------|---------|---------|
| [mistralai/Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501) | box | 56.15 (±0.0172) | 37.48 (±0.0098) | 74.61 (±0.0154) | 3 | 隨機 |
| [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) | box | 15.49 (±0.0104) | 25.68 (±0.0200) | 6.90 (±0.0096) | 3 | 隨機 |
| [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) | pattern | 35.85 (±0.0174) | 32.22 (±0.0023) | 59.33 (±0.0168) | 3 | 隨機 |
| [MediaTek-Research/Llama-Breeze2-3B-Instruct](https://huggingface.co/MediaTek-Research/Llama-Breeze2-3B-Instruct) | pattern | 40.32 (±0.0181) | 38.92 (±0.0193) | 55.37 (±0.0180) | 3 | 隨機 |
| [twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct](https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct) (ours) | box | 46.16 (±0.0198) | 34.92 (±0.0243) | 51.22 (±0.0206) | 3 | 隨機 |
下表用 lighteval 評測框架
| 模型 | MATH-500 | GPQA Diamond |
|--------------------------------------------|----------|--------------|
| [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) | 44.40 | 27.78 |
| [twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct](https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct) (ours) | **51.40**| **33.84** |
---
## 🔧 Tool Calling
本模型使用 Hermes 格式訓練,並支援平行呼叫(Parallel calling),以下為完整範例流程。
Tool call 模板已經為大家寫好放進 chat-template 了,Enjoy it!
### 1️⃣ 啟動 vLLM 後端
> **⚠️ 注意:需要 vLLM 版本 >= 0.8.3,否則 `enable-reasoning`、`enable-auto-tool-choice` 無法同時開啟**
```bash
vllm serve twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct \
--port 8001 \
--enable-reasoning \
--reasoning-parser deepseek_r1 \
--enable-auto-tool-choice \
--tool-call-parser hermes
```
### 2️⃣ 定義工具(Functions)
```python
def get_weather(location: str, unit: str):
return f"{location}的氣溫是{unit}26度,晴朗無風"
def search(query: str):
return "川普終於宣布對等關稅政策,針對 18 個經濟體課徵一半的對等關稅,並從 4/5 起對所有進口產品徵收10%的基準關稅!美國將針對被認定為不當貿易行為(不公平貿易) 的國家,於 4/9 起課徵報復型對等關稅 (Discounted Reciprocal Tariff),例如:日本將被課徵 24% 的關稅,歐盟則為 20%,以取代普遍性的 10% 關稅。\n針對中國則開啟新一波 34% 關稅,並疊加於先前已實施的關稅上,這將使中國進口商品的基本關稅稅率達到 54%,而且這尚未包含拜登總統任內或川普第一任期所施加的額外關稅。加拿大與墨西哥則不適用這套對等關稅制度,但川普認為這些國家在芬太尼危機與非法移民問題尚未完全解決,因此計畫對這兩國的大多數進口商品施加 25% 關稅。另外原本針對汽車與多數其他商品的關稅豁免將於 4/2 到期。\n台灣的部分,美國擬向台灣課徵32%的對等關稅,雖然並未針對晶片特別課徵關稅,但仍在記者會中提到台灣搶奪所有的電腦與半導體晶片,最終促成台積電對美國投資計劃額外加碼 1,000 億美元的歷史性投資;歐盟則課徵20%的對等關稅。最後是汽車關稅將於 4/2 起,對所有外國製造的汽車課徵25% 關稅。"
tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string", "description": "國家或城市名, e.g., 'Taipei'、'Jaipei'"},
"unit": {"type": "string", "description": "氣溫單位,亞洲城市使用攝氏;歐美城市使用華氏", "enum": ["celsius", "fahrenheit"]}
},
"required": ["location", "unit"]
}
}
},
{
"type": "function",
"function": {
"name": "search",
"description": "這是一個類似 Google 的搜尋引擎,關於知識、天氣、股票、電影、小說、百科等等問題,如果你不確定答案就搜尋一下。",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string", "description": "should be a search query, e.g., '2024 南韓 戒嚴'"}
},
"required": ["query"]
}
}
}
]
```
### 3️⃣ 執行工具調用(Tool Calls)
> **⚠️ 注意:system_prompt 可以不用帶,除非是需要時間基準的工具。**
```python
response = client.chat.completions.create(
model=client.models.list().data[0].id,
messages=[
{"role": "system", "content": "記住你的知識截止於 2024/12,今天是 2025/4/7"},
{"role": "user", "content": "台北氣溫如何? 另外,告訴我川普最新關稅政策"},
],
max_tokens=1500,
temperature=0.6,
top_p=0.95,
tools=tools,
tool_choice="auto"
)
print(response.choices[0].message.reasoning_content)
print(response.choices[0].message.tool_calls)
```
#### 🧠 推理內容輸出(僅顯示部分)
> 好的,我需要幫助這個使用者解決他們的問題。他們問了兩件事:首先,臺北市的天氣情況,以及第二,關於川普最近的關稅政策。
> 對於第一部分,他們提到了“臺北”,所以應該呼叫 get_weather 函式…
> 接下來是關於川普的新關稅政策…
> 總結一下,我需要分別進行兩次 API 呼叫,每次都有各自正確填寫的參數…
#### ⚙️ Tool Calls List
```json
[ChatCompletionMessageToolCall(id='chatcmpl-tool-35e74420119349999913a10133b84bd3', function=Function(arguments='{"location": "Taipei", "unit": "celsius"}', name='get_weather'), type='function'), ChatCompletionMessageToolCall(id='chatcmpl-tool-7ffdcb98e59f4134a6171defe7f2e31b', function=Function(arguments='{"query": "Donald Trump latest tariffs policy"}', name='search'), type='function')]
```
### 4️⃣ 產生最終回答
```python
response = client.chat.completions.create(
model=client.models.list().data[0].id,
messages=[
{"role": "system", "content": "記住你的知識截止於 2024/12,今天是 2025/4/7"},
{"role": "user", "content": "台北氣溫如何? 另外,告訴我川普最新關稅政策"},
{
"role": "assistant",
"content": "",
"tool_calls": [
{
"id": response.choices[0].message.tool_calls[0].id,
"type": "function",
"function": {
"name": response.choices[0].message.tool_calls[0].function.name,
"arguments": response.choices[0].message.tool_calls[0].function.arguments
}
},
{
"id": response.choices[0].message.tool_calls[1].id,
"type": "function",
"function": {
"name": response.choices[0].message.tool_calls[1].function.name,
"arguments": response.choices[0].message.tool_calls[1].function.arguments
}
}
]
},
{
"role": "tool",
"content": search(**json.loads(response.choices[0].message.tool_calls[0].function.arguments)),
"tool_call_id": response.choices[0].message.tool_calls[0].id # tool_call_id 必須要帶,才能正確配對 工具 及 tool_call
},
{
"role": "tool",
"content": get_weather(**json.loads(response.choices[0].message.tool_calls[1].function.arguments)),
"tool_call_id": response.choices[0].message.tool_calls[1].id # tool_call_id 必須要帶,才能正確配對 工具 及 tool_call
}
],
max_tokens=1500,
temperature=0.6,
top_p=0.95,
tools=tools,
tool_choice="auto"
)
print(response.choices[0].message.reasoning_content)
print(response.choices[0].message.content)
```
#### 🧠 推理內容輸出(僅顯示部分)
> 首先,我需要處理使用者的查詢,他們要求了解臺北市的當下氣溫以及川普最近的關稅政策…
> 在呼叫了 `get_weather` 後得到了臺北市氣溫為 26 度(攝氏)…
> 接著,使用 `search` 搜尋「川普最新關稅政策 2025」…
> 整合後,我提供如下摘要:
#### 📋 最終輸出內容
```text
以下是您請求的資訊:
**臺北市氣溫**
- 目前的氣溫為 **26°C**(攝氏)
- 天候狀況:晴朗無風
**川普最新關稅政策概述**
1. **對等關稅政策**
- 對 18 個經濟體課徵 50% 的對等關稅
- 自 4 月 5 日起,所有進口產品全面徵收 10% 基本關稅
2. **報復型對等關稅**
- 日本 24%、歐盟 20%
3. **對中國的高額關稅**
- 增加至 54%(原有關稅 + 新增 34%)
4. **特殊案例**
- 加拿大與墨西哥不適用,但其他商品課徵 25%
- 汽車與部分商品的免稅即將到期
5. **對台灣的影響**
- 美國計畫對台灣課徵 32% 關稅,但晶片暫無額外課稅
6. **全球視角**
- 歐盟與日本關稅比例相對較高
```
## Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
```yaml
@misc{twinkleai2025llama3.2f1,
title = {Llama-3.2-3B-F1-Reasoning-Instruct: A Traditional Chinese Instruction-Tuned Reasoning Language Model for Taiwan},
author = {Huang, Liang Hsun and Chen, Min Yi and Lin, Wen Bin and Chuang, Chao Chun and Sung, Dave},
year = {2025},
howpublished = {\url{https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Instruct}},
note = {Twinkle AI and APMIC. All authors contributed equally.}
}
```
## Acknowledge
- 特此感謝[國家高速網路與計算中心](https://www.nchc.org.tw/)的指導與 [APMIC](https://www.apmic.ai/) 的算力支援,才得以讓本專案訓利完成。
- 特此致謝黃啟聖老師、許武龍(哈爸)、臺北市立第一女子高級中學物理科陳姿燁老師、[奈視科技](https://nanoseex.com/) CTO Howard、[AIPLUX Technology](https://aiplux.com/)、郭家嘉老師以及所有在資料集製作過程中提供寶貴協助的夥伴。
## Model Card Authors
[Twinkle AI](https://huggingface.co/twinkle-ai)
## Model Card Contact
[Twinkle AI](https://huggingface.co/twinkle-ai)