NICOPOI-9's picture
End of training
7eefd23 verified
metadata
library_name: transformers
license: other
base_model: >-
  NICOPOI-9/segformer-b5-finetuned-ade20k-morphpadver1-hgo-coord-v9_mix_resample_40epochs
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: >-
      segformer-b5-finetuned-morphpad-morphpadver1-hgo-coord-v9_16mat_2void_40epochs
    results: []

segformer-b5-finetuned-morphpad-morphpadver1-hgo-coord-v9_16mat_2void_40epochs

This model is a fine-tuned version of NICOPOI-9/segformer-b5-finetuned-ade20k-morphpadver1-hgo-coord-v9_mix_resample_40epochs on the NICOPOI-9/morphpad_16_labels_2voids_gaussian dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3575
  • Mean Iou: 0.8930
  • Mean Accuracy: 0.9416
  • Overall Accuracy: 0.9463
  • Accuracy [0,0]: 0.9359
  • Accuracy [0,1]: 0.9388
  • Accuracy [1,0]: 0.9489
  • Accuracy [1,1]: 0.9515
  • Accuracy [0,2]: 0.9458
  • Accuracy [0,3]: 0.9591
  • Accuracy [1,2]: 0.9443
  • Accuracy [1,3]: 0.9617
  • Accuracy [2,0]: 0.9116
  • Accuracy [2,1]: 0.9338
  • Accuracy [2,2]: 0.9560
  • Accuracy [2,3]: 0.9303
  • Accuracy [3,0]: 0.9475
  • Accuracy [3,1]: 0.9086
  • Accuracy [3,2]: 0.9391
  • Accuracy [3,3]: 0.9160
  • Accuracy Void: 0.9788
  • Iou [0,0]: 0.8957
  • Iou [0,1]: 0.9112
  • Iou [1,0]: 0.8826
  • Iou [1,1]: 0.9078
  • Iou [0,2]: 0.8907
  • Iou [0,3]: 0.9174
  • Iou [1,2]: 0.8766
  • Iou [1,3]: 0.8767
  • Iou [2,0]: 0.8790
  • Iou [2,1]: 0.9008
  • Iou [2,2]: 0.8806
  • Iou [2,3]: 0.8972
  • Iou [3,0]: 0.9088
  • Iou [3,1]: 0.8467
  • Iou [3,2]: 0.8877
  • Iou [3,3]: 0.8755
  • Iou Void: 0.9455

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy [0,0] Accuracy [0,1] Accuracy [1,0] Accuracy [1,1] Accuracy [0,2] Accuracy [0,3] Accuracy [1,2] Accuracy [1,3] Accuracy [2,0] Accuracy [2,1] Accuracy [2,2] Accuracy [2,3] Accuracy [3,0] Accuracy [3,1] Accuracy [3,2] Accuracy [3,3] Accuracy Void Iou [0,0] Iou [0,1] Iou [1,0] Iou [1,1] Iou [0,2] Iou [0,3] Iou [1,2] Iou [1,3] Iou [2,0] Iou [2,1] Iou [2,2] Iou [2,3] Iou [3,0] Iou [3,1] Iou [3,2] Iou [3,3] Iou Void
0.2611 7.3260 4000 0.4402 0.7621 0.8618 0.8738 0.8911 0.8941 0.9373 0.8466 0.8823 0.8020 0.8669 0.8736 0.8264 0.8524 0.8802 0.8070 0.8686 0.7729 0.8628 0.8363 0.9506 0.7294 0.8149 0.7502 0.7804 0.7516 0.7345 0.7654 0.7698 0.7054 0.7860 0.7727 0.7222 0.7650 0.7060 0.7560 0.7201 0.9259
0.0752 14.6520 8000 0.3003 0.8459 0.9150 0.9219 0.9089 0.9053 0.9341 0.9189 0.9172 0.9234 0.8981 0.9248 0.9091 0.8928 0.9286 0.9263 0.9165 0.8866 0.9078 0.8821 0.9748 0.8681 0.8589 0.8396 0.8530 0.8516 0.8442 0.8280 0.8354 0.8609 0.8350 0.8572 0.8455 0.8423 0.7927 0.8292 0.8006 0.9391
0.0345 21.9780 12000 0.3628 0.8687 0.9270 0.9333 0.9331 0.9187 0.9463 0.9345 0.9437 0.9366 0.9222 0.9471 0.9114 0.9126 0.9537 0.9311 0.9123 0.8793 0.9177 0.8809 0.9784 0.8684 0.8907 0.8609 0.8826 0.8744 0.8767 0.8494 0.8459 0.8656 0.8727 0.8758 0.8759 0.8715 0.8379 0.8433 0.8352 0.9405
0.0422 29.3040 16000 0.3604 0.8848 0.9367 0.9422 0.9402 0.9259 0.9539 0.9297 0.9421 0.9427 0.9482 0.9681 0.8912 0.9222 0.9529 0.9482 0.9337 0.8971 0.9419 0.9112 0.9746 0.8744 0.9078 0.8724 0.8885 0.8864 0.8982 0.8794 0.8767 0.8503 0.8826 0.8739 0.9045 0.8934 0.8480 0.8898 0.8710 0.9449
0.0304 36.6300 20000 0.3575 0.8930 0.9416 0.9463 0.9359 0.9388 0.9489 0.9515 0.9458 0.9591 0.9443 0.9617 0.9116 0.9338 0.9560 0.9303 0.9475 0.9086 0.9391 0.9160 0.9788 0.8957 0.9112 0.8826 0.9078 0.8907 0.9174 0.8766 0.8767 0.8790 0.9008 0.8806 0.8972 0.9088 0.8467 0.8877 0.8755 0.9455

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.1.0
  • Datasets 3.2.0
  • Tokenizers 0.21.0