🦜VideoChat-Flash-Qwen2-7B_res448⚡

[📰 Blog] [📂 GitHub] [📜 Tech Report] [🗨️ Chat Demo]

VideoChat-Flash-7B is constructed upon UMT-L (300M) and Qwen2-7B, employing only 16 tokens per frame. By leveraging Yarn to extend the context window to 128k (Qwen2's native context window is 32k), our model supports input sequences of up to approximately 10,000 frames.

Note: Due to a predominantly English training corpus, the model only exhibits basic Chinese comprehension, to ensure optimal performance, using English for interaction is recommended.

📈 Performance

Model MVBench LongVideoBench VideoMME(w/o sub) Max Input Frames
VideoChat-Flash-Qwen2_5-2B@448 70.0 58.3 57.0 10000
VideoChat-Flash-Qwen2-7B@224 73.2 64.2 64.0 10000
VideoChat-Flash-Qwen2_5-7B-1M@224 73.4 66.5 63.5 50000
VideoChat-Flash-Qwen2_5-7B_InternVideo2-1B@224 74.3 64.5 65.1 10000
VideoChat-Flash-Qwen2-7B@448 74.0 64.7 65.3 10000

🚀 How to use the model

First, you need to install flash attention2 and some other modules. We provide a simple installation example below:

pip install transformers==4.40.1
pip install av
pip install imageio
pip install decord
pip install opencv-python
pip install flash-attn --no-build-isolation

Then you could use our model:

from transformers import AutoModel, AutoTokenizer

# model setting
model_path = 'OpenGVLab/VideoChat-Flash-Qwen2-7B_res448'

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda()
image_processor = model.get_vision_tower().image_processor

mm_llm_compress = False # use the global compress or not
if mm_llm_compress:
    model.config.mm_llm_compress = True
    model.config.llm_compress_type = "uniform0_attention"
    model.config.llm_compress_layer_list = [4, 18]
    model.config.llm_image_token_ratio_list = [1, 0.75, 0.25]
else:
    model.config.mm_llm_compress = False

# evaluation setting
max_num_frames = 512
generation_config = dict(
    do_sample=False,
    temperature=0.0,
    max_new_tokens=1024,
    top_p=0.1,
    num_beams=1
)

video_path = "your_video.mp4"

# single-turn conversation
question1 = "Describe this video in detail."
output1, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question1, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config)

print(output1)

# multi-turn conversation
question2 = "How many people appear in the video?"
output2, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question2, chat_history=chat_history, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config)

print(output2)

✏️ Citation


@article{li2024videochatflash,
  title={VideoChat-Flash: Hierarchical Compression for Long-Context Video Modeling},
  author={Li, Xinhao and Wang, Yi and Yu, Jiashuo and Zeng, Xiangyu and Zhu, Yuhan and Huang, Haian and Gao, Jianfei and Li, Kunchang and He, Yinan and Wang, Chenting and others},
  journal={arXiv preprint arXiv:2501.00574},
  year={2024}
}
Downloads last month
702
Safetensors
Model size
7.92B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support model that require custom code execution.

Space using OpenGVLab/VideoChat-Flash-Qwen2-7B_res448 1

Collection including OpenGVLab/VideoChat-Flash-Qwen2-7B_res448

Evaluation results