🦜VideoChat-Flash-Qwen2_5-7B-1M_res224⚡
[📰 Blog] [📂 GitHub] [📜 Tech Report] [🗨️ Chat Demo]
VideoChat-Flash-Qwen2_5-7B_InternVideo2-1B is constructed upon UMT-L (300M) and Qwen2.5-7B-1M, employing only 16 tokens per frame. By leveraging Yarn to extend the context window to 1M (Qwen2.5-7B-1M's native context window is 128k), our model supports input sequences of up to approximately 50,000 frames.
Note: Due to a predominantly English training corpus, the model only exhibits basic Chinese comprehension, to ensure optimal performance, using English for interaction is recommended.
📈 Performance
Model | MVBench | LongVideoBench | VideoMME(w/o sub) | Max input frames |
---|---|---|---|---|
VideoChat-Flash-Qwen2_5-2B@448 | 70.0 | 58.3 | 57.0 | 10000 |
VideoChat-Flash-Qwen2-7B@224 | 73.2 | 64.2 | 64.0 | 10000 |
VideoChat-Flash-Qwen2_5-7B-1M@224 | 73.4 | 66.5 | 63.5 | 50000 |
VideoChat-Flash-Qwen2_5-7B_InternVideo2-1B@224 | 74.3 | 64.5 | 65.1 | 10000 |
VideoChat-Flash-Qwen2-7B@448 | 74.0 | 64.7 | 65.3 | 10000 |
🚀 How to use the model
First, you need to install flash attention2 and some other modules. We provide a simple installation example below:
pip install transformers==4.40.1
pip install av
pip install imageio
pip install decord
pip install opencv-python
pip install flash-attn --no-build-isolation
Then you could use our model:
from transformers import AutoModel, AutoTokenizer
# model setting
model_path = 'OpenGVLab/VideoChat-Flash-Qwen2_5-7B-1M_res224'
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda()
image_processor = model.get_vision_tower().image_processor
mm_llm_compress = False # use the global compress or not
if mm_llm_compress:
model.config.mm_llm_compress = True
model.config.llm_compress_type = "uniform0_attention"
model.config.llm_compress_layer_list = [4, 18]
model.config.llm_image_token_ratio_list = [1, 0.75, 0.25]
else:
model.config.mm_llm_compress = False
# evaluation setting
max_num_frames = 512
generation_config = dict(
do_sample=False,
temperature=0.0,
max_new_tokens=1024,
top_p=0.1,
num_beams=1
)
video_path = "your_video.mp4"
# single-turn conversation
question1 = "Describe this video in detail."
output1, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question1, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config)
print(output1)
# multi-turn conversation
question2 = "How many people appear in the video?"
output2, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question2, chat_history=chat_history, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config)
print(output2)
✏️ Citation
@article{li2024videochatflash,
title={VideoChat-Flash: Hierarchical Compression for Long-Context Video Modeling},
author={Li, Xinhao and Wang, Yi and Yu, Jiashuo and Zeng, Xiangyu and Zhu, Yuhan and Huang, Haian and Gao, Jianfei and Li, Kunchang and He, Yinan and Wang, Chenting and others},
journal={arXiv preprint arXiv:2501.00574},
year={2024}
}
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The HF Inference API does not support model that require custom code execution.
Evaluation results
- accuracy on MLVUself-reported74.100
- accuracy on MVBenchself-reported73.400
- accuracy on Perception Testself-reported75.400
- accuracy on LongVideoBenchself-reported66.500
- accuracy on VideoMME (wo sub)self-reported63.500
- accuracy on LVBenchself-reported46.000