ModernBERT Embed base Legal Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Pravallika2001/modernbert-embed-base-legal-matryoshka-1")
# Run inference
sentences = [
'this information to represent the client effectively and, if necessary, \nto advise the client to refrain from wrongful conduct. Almost \nwithout exception, clients come to lawyers in order to determine \ntheir rights and what is, in the complex of laws and regulations, \ndeemed to be legal and correct. Based on experience, lawyers know',
'What may lawyers advise their clients to refrain from?',
"Does the regulation’s definition of 'permanent' support the Government’s argument?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.5518 | 0.5564 | 0.5193 | 0.4482 | 0.3338 |
cosine_accuracy@3 | 0.6012 | 0.5966 | 0.5657 | 0.4807 | 0.3632 |
cosine_accuracy@5 | 0.6878 | 0.6723 | 0.6445 | 0.5734 | 0.4529 |
cosine_accuracy@10 | 0.7543 | 0.7434 | 0.7156 | 0.6785 | 0.5348 |
cosine_precision@1 | 0.5518 | 0.5564 | 0.5193 | 0.4482 | 0.3338 |
cosine_precision@3 | 0.5193 | 0.5188 | 0.4869 | 0.4209 | 0.3168 |
cosine_precision@5 | 0.3975 | 0.3913 | 0.3716 | 0.3233 | 0.2519 |
cosine_precision@10 | 0.2297 | 0.2266 | 0.2184 | 0.2068 | 0.1595 |
cosine_recall@1 | 0.2026 | 0.2039 | 0.1918 | 0.161 | 0.1179 |
cosine_recall@3 | 0.5188 | 0.5184 | 0.4879 | 0.418 | 0.3153 |
cosine_recall@5 | 0.6425 | 0.635 | 0.603 | 0.5238 | 0.412 |
cosine_recall@10 | 0.7391 | 0.7294 | 0.703 | 0.6646 | 0.5143 |
cosine_ndcg@10 | 0.6521 | 0.6476 | 0.6172 | 0.5579 | 0.4263 |
cosine_mrr@10 | 0.5987 | 0.5979 | 0.5639 | 0.4948 | 0.3752 |
cosine_map@100 | 0.6393 | 0.6366 | 0.6046 | 0.5373 | 0.4193 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 5,822 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 15 tokens
- mean: 97.03 tokens
- max: 157 tokens
- min: 7 tokens
- mean: 16.65 tokens
- max: 37 tokens
- Samples:
positive anchor communications was evidence of the defendant’s guilt; that is, what the defendant said in
those communications was inculpatory. See id. at 645-52, 674-76. But the State had to
establish that the communications were the handiwork of the defendant. It was in that
context that temporal proximity came into play: The timing of the communications relativeWhich pages of the cited document discuss the defendant's communications and their evidentiary value?
lawyer having supervisory authority over performance of specific
legal work by another lawyer. Whether a lawyer has such
supervisory authority in particular circumstances is a question of
fact. Partners and lawyers with comparable authority have at least
indirect responsibility for all work being done by the firm, while a
partner or manager in charge of a particular matter ordinarily alsoWho has at least indirect responsibility for all work being done by the firm?
cuando el demandado contesta la demanda y niega su
responsabilidad total, aunque la acepte posteriormente;
cuando se defiende injustificadamente de la acción que
se presenta en su contra; cuando no admite
francamente su responsabilidad limitada o parcial, a
pesar de creer que la única razón que tiene para
oponerse a la demanda es que la cuantía es exagerada;¿Cuál es la razón que el demandado cree tener para oponerse a la demanda?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8791 | 10 | 89.4929 | - | - | - | - | - |
1.0 | 12 | - | 0.6233 | 0.6056 | 0.5715 | 0.5117 | 0.3814 |
1.7033 | 20 | 40.7733 | - | - | - | - | - |
2.0 | 24 | - | 0.6495 | 0.6425 | 0.6064 | 0.5491 | 0.4172 |
2.5275 | 30 | 29.6387 | - | - | - | - | - |
3.0 | 36 | - | 0.6512 | 0.6476 | 0.6172 | 0.5554 | 0.4252 |
3.3516 | 40 | 26.8564 | - | - | - | - | - |
3.7033 | 44 | - | 0.6521 | 0.6476 | 0.6172 | 0.5579 | 0.4263 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.50.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.4.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Pravallika2001/modernbert-embed-base-legal-matryoshka-1
Base model
answerdotai/ModernBERT-base
Finetuned
nomic-ai/modernbert-embed-base
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.552
- Cosine Accuracy@3 on dim 768self-reported0.601
- Cosine Accuracy@5 on dim 768self-reported0.688
- Cosine Accuracy@10 on dim 768self-reported0.754
- Cosine Precision@1 on dim 768self-reported0.552
- Cosine Precision@3 on dim 768self-reported0.519
- Cosine Precision@5 on dim 768self-reported0.398
- Cosine Precision@10 on dim 768self-reported0.230
- Cosine Recall@1 on dim 768self-reported0.203
- Cosine Recall@3 on dim 768self-reported0.519