metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5822
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/modernbert-embed-base
widget:
- source_sentence: >-
“deviation”). “[D]eviations from the FAR may be granted . . . when
necessary to meet the specific
needs and requirements of each agency.” FAR 1.402. “Class deviations
affect more than one
contract” and “may be authorized by agency heads or their designees.” FAR
1.404.
13 Acquisition Policy Library & Resources – Class Deviations: CD-2020-14,
U.S. General Services
Administration,
sentences:
- What section might GSA rely on if they choose?
- Who can authorize class deviations?
- What type of protest did the plaintiffs file?
- source_sentence: >-
record in this case to portray their assignment of rights position in a
better light falls short of the
level of representation that this Court expects of a United States
government agency. The CIA
should know better than to make such an obviously unfounded argument,
particularly in light of
the many allegations of bad faith that have been leveled by the plaintiff
in these cases, including
sentences:
- What statement is included about the contents of the document?
- >-
What is the level of representation expected by the Court from a United
States government agency?
- >-
What did the GSA determine should be included in the Polaris GWAC
regarding task orders?
- source_sentence: |-
abogado cuando una parte o su abogado procede con temeridad o
frivolidad. Pérez Rodríguez v. López Rodríguez, 210 DPR 163 (2022);
SLG González-Figueroa v. Pacheco Romero, 209 DPR 138, 145-150
(2022).
De esta manera, la imposición o concesión de honorarios de
abogado no procede en todos los casos. Depende, pues, de la
determinación discrecional que haga el tribunal en torno a si la parte
sentences:
- What action did the CIA arguably take in response to the plaintiff?
- What year was the Pérez Rodríguez v. López Rodríguez case decided?
- What exhibit is referenced in the declaration by Hackett?
- source_sentence: >-
properly before the Court on summary judgment. The CIA has not moved for
summary
judgment on this issue, or at least does not specifically address this
issue in moving for summary
judgment in No. 11-443 or 11-444. Additionally, although the plaintiff
contends in its
opposition brief in No. 11-444 that “[t]he Court should order [the CIA] to
promptly produce
sentences:
- >-
In which case number does the plaintiff contend the CIA should promptly
produce something?
- >-
What document did the plaintiff allegedly send to the defendant on April
6, 2023?
- What does the plaintiff suspect the name to be?
- source_sentence: |-
this information to represent the client effectively and, if necessary,
to advise the client to refrain from wrongful conduct. Almost
without exception, clients come to lawyers in order to determine
their rights and what is, in the complex of laws and regulations,
deemed to be legal and correct. Based on experience, lawyers know
sentences:
- >-
Does the regulation’s definition of 'permanent' support the Government’s
argument?
- What may lawyers advise their clients to refrain from?
- What distinction is made in Section 125.9(h)(1)(iii)?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: ModernBERT Embed base Legal Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.5517774343122102
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6012364760432767
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6877897990726429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7542503863987635
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5517774343122102
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.5193199381761978
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.3975270479134467
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.22967542503863986
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.20260175167439462
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5188047398248326
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6424523441524986
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7390520350334878
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6520552285814428
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5986623242805615
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6393368807672634
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.5564142194744977
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5965996908809892
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6723338485316847
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7434312210200927
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5564142194744977
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.5188047398248326
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.39134466769706333
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.22658423493044821
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.2038897475528078
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5184183410613086
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6349819680577022
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.729392065945389
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6476121678305687
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5979428865827624
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6366019137471932
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.5193199381761978
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5656877897990726
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6445131375579598
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7156105100463679
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5193199381761978
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.4868624420401855
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.37156105100463677
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.21839258114374036
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.19178258629572387
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.48789283874291595
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.603039670273055
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7029881504379186
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6171714846474416
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5638845955692942
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6045559010924416
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.4482225656877898
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4806800618238022
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5734157650695518
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.678516228748068
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.4482225656877898
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.42091705306543026
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.323338485316847
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.20680061823802165
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1609994848016486
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4179546625450798
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5238279237506439
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6646058732612056
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5579442201339713
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4947738033904957
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5372662887750875
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.33384853168469864
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.36321483771251933
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.4528593508500773
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5347758887171561
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.33384853168469864
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3168469860896445
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.25193199381761977
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.15950540958268933
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1178516228748068
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.31530139103554866
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.41202988150437914
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5142967542503863
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4263181530641336
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.37517295944652945
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.41925093891654286
name: Cosine Map@100
ModernBERT Embed base Legal Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Pravallika2001/modernbert-embed-base-legal-matryoshka-1")
# Run inference
sentences = [
'this information to represent the client effectively and, if necessary, \nto advise the client to refrain from wrongful conduct. Almost \nwithout exception, clients come to lawyers in order to determine \ntheir rights and what is, in the complex of laws and regulations, \ndeemed to be legal and correct. Based on experience, lawyers know',
'What may lawyers advise their clients to refrain from?',
"Does the regulation’s definition of 'permanent' support the Government’s argument?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.5518 | 0.5564 | 0.5193 | 0.4482 | 0.3338 |
cosine_accuracy@3 | 0.6012 | 0.5966 | 0.5657 | 0.4807 | 0.3632 |
cosine_accuracy@5 | 0.6878 | 0.6723 | 0.6445 | 0.5734 | 0.4529 |
cosine_accuracy@10 | 0.7543 | 0.7434 | 0.7156 | 0.6785 | 0.5348 |
cosine_precision@1 | 0.5518 | 0.5564 | 0.5193 | 0.4482 | 0.3338 |
cosine_precision@3 | 0.5193 | 0.5188 | 0.4869 | 0.4209 | 0.3168 |
cosine_precision@5 | 0.3975 | 0.3913 | 0.3716 | 0.3233 | 0.2519 |
cosine_precision@10 | 0.2297 | 0.2266 | 0.2184 | 0.2068 | 0.1595 |
cosine_recall@1 | 0.2026 | 0.2039 | 0.1918 | 0.161 | 0.1179 |
cosine_recall@3 | 0.5188 | 0.5184 | 0.4879 | 0.418 | 0.3153 |
cosine_recall@5 | 0.6425 | 0.635 | 0.603 | 0.5238 | 0.412 |
cosine_recall@10 | 0.7391 | 0.7294 | 0.703 | 0.6646 | 0.5143 |
cosine_ndcg@10 | 0.6521 | 0.6476 | 0.6172 | 0.5579 | 0.4263 |
cosine_mrr@10 | 0.5987 | 0.5979 | 0.5639 | 0.4948 | 0.3752 |
cosine_map@100 | 0.6393 | 0.6366 | 0.6046 | 0.5373 | 0.4193 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 5,822 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 15 tokens
- mean: 97.03 tokens
- max: 157 tokens
- min: 7 tokens
- mean: 16.65 tokens
- max: 37 tokens
- Samples:
positive anchor communications was evidence of the defendant’s guilt; that is, what the defendant said in
those communications was inculpatory. See id. at 645-52, 674-76. But the State had to
establish that the communications were the handiwork of the defendant. It was in that
context that temporal proximity came into play: The timing of the communications relativeWhich pages of the cited document discuss the defendant's communications and their evidentiary value?
lawyer having supervisory authority over performance of specific
legal work by another lawyer. Whether a lawyer has such
supervisory authority in particular circumstances is a question of
fact. Partners and lawyers with comparable authority have at least
indirect responsibility for all work being done by the firm, while a
partner or manager in charge of a particular matter ordinarily alsoWho has at least indirect responsibility for all work being done by the firm?
cuando el demandado contesta la demanda y niega su
responsabilidad total, aunque la acepte posteriormente;
cuando se defiende injustificadamente de la acción que
se presenta en su contra; cuando no admite
francamente su responsabilidad limitada o parcial, a
pesar de creer que la única razón que tiene para
oponerse a la demanda es que la cuantía es exagerada;¿Cuál es la razón que el demandado cree tener para oponerse a la demanda?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8791 | 10 | 89.4929 | - | - | - | - | - |
1.0 | 12 | - | 0.6233 | 0.6056 | 0.5715 | 0.5117 | 0.3814 |
1.7033 | 20 | 40.7733 | - | - | - | - | - |
2.0 | 24 | - | 0.6495 | 0.6425 | 0.6064 | 0.5491 | 0.4172 |
2.5275 | 30 | 29.6387 | - | - | - | - | - |
3.0 | 36 | - | 0.6512 | 0.6476 | 0.6172 | 0.5554 | 0.4252 |
3.3516 | 40 | 26.8564 | - | - | - | - | - |
3.7033 | 44 | - | 0.6521 | 0.6476 | 0.6172 | 0.5579 | 0.4263 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.50.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.4.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}