|
--- |
|
license: apache-2.0 |
|
base_model: distilbert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imdb |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: N_distilbert_imdb_padding10model |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: imdb |
|
type: imdb |
|
config: plain_text |
|
split: test |
|
args: plain_text |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.93352 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# N_distilbert_imdb_padding10model |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7558 |
|
- Accuracy: 0.9335 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 0.2364 | 1.0 | 1563 | 0.2100 | 0.9252 | |
|
| 0.1754 | 2.0 | 3126 | 0.2253 | 0.928 | |
|
| 0.1006 | 3.0 | 4689 | 0.2885 | 0.9287 | |
|
| 0.0627 | 4.0 | 6252 | 0.3760 | 0.9271 | |
|
| 0.0436 | 5.0 | 7815 | 0.4199 | 0.9281 | |
|
| 0.0353 | 6.0 | 9378 | 0.4874 | 0.9294 | |
|
| 0.0176 | 7.0 | 10941 | 0.6403 | 0.919 | |
|
| 0.0172 | 8.0 | 12504 | 0.5783 | 0.9264 | |
|
| 0.0206 | 9.0 | 14067 | 0.5343 | 0.9298 | |
|
| 0.0125 | 10.0 | 15630 | 0.6186 | 0.927 | |
|
| 0.012 | 11.0 | 17193 | 0.5948 | 0.9309 | |
|
| 0.0094 | 12.0 | 18756 | 0.6524 | 0.9293 | |
|
| 0.0095 | 13.0 | 20319 | 0.6730 | 0.9262 | |
|
| 0.0053 | 14.0 | 21882 | 0.6670 | 0.9316 | |
|
| 0.0024 | 15.0 | 23445 | 0.6873 | 0.9322 | |
|
| 0.0028 | 16.0 | 25008 | 0.6858 | 0.9328 | |
|
| 0.0007 | 17.0 | 26571 | 0.7114 | 0.9326 | |
|
| 0.0014 | 18.0 | 28134 | 0.7477 | 0.9331 | |
|
| 0.0 | 19.0 | 29697 | 0.7567 | 0.9335 | |
|
| 0.0 | 20.0 | 31260 | 0.7558 | 0.9335 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|