|
--- |
|
license: apache-2.0 |
|
base_model: distilbert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imdb |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: distilbert_imdb_padding0model |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: imdb |
|
type: imdb |
|
config: plain_text |
|
split: test |
|
args: plain_text |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9328 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert_imdb_padding0model |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7541 |
|
- Accuracy: 0.9328 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 0.2321 | 1.0 | 1563 | 0.2211 | 0.9195 | |
|
| 0.1748 | 2.0 | 3126 | 0.2320 | 0.9289 | |
|
| 0.1084 | 3.0 | 4689 | 0.3254 | 0.9251 | |
|
| 0.0715 | 4.0 | 6252 | 0.3303 | 0.9267 | |
|
| 0.0433 | 5.0 | 7815 | 0.4353 | 0.9276 | |
|
| 0.0335 | 6.0 | 9378 | 0.4458 | 0.9302 | |
|
| 0.033 | 7.0 | 10941 | 0.4704 | 0.9282 | |
|
| 0.0171 | 8.0 | 12504 | 0.5326 | 0.9281 | |
|
| 0.0147 | 9.0 | 14067 | 0.5456 | 0.9292 | |
|
| 0.0099 | 10.0 | 15630 | 0.6037 | 0.9274 | |
|
| 0.0166 | 11.0 | 17193 | 0.5636 | 0.9286 | |
|
| 0.0101 | 12.0 | 18756 | 0.6355 | 0.9276 | |
|
| 0.0086 | 13.0 | 20319 | 0.6102 | 0.9288 | |
|
| 0.0068 | 14.0 | 21882 | 0.6305 | 0.9331 | |
|
| 0.005 | 15.0 | 23445 | 0.6391 | 0.9293 | |
|
| 0.0009 | 16.0 | 25008 | 0.7000 | 0.9339 | |
|
| 0.0035 | 17.0 | 26571 | 0.7205 | 0.9325 | |
|
| 0.0017 | 18.0 | 28134 | 0.7649 | 0.9294 | |
|
| 0.0007 | 19.0 | 29697 | 0.7745 | 0.9329 | |
|
| 0.0023 | 20.0 | 31260 | 0.7541 | 0.9328 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|