|
--- |
|
language: |
|
- en |
|
- fr |
|
- de |
|
- es |
|
- pt |
|
- it |
|
- ja |
|
- ko |
|
- ru |
|
- zh |
|
- ar |
|
- fa |
|
- id |
|
- ms |
|
- ne |
|
- pl |
|
- ro |
|
- sr |
|
- sv |
|
- tr |
|
- uk |
|
- vi |
|
- hi |
|
- bn |
|
license: apache-2.0 |
|
library_name: vllm |
|
base_model: |
|
- mistralai/Mistral-Small-3.1-24B-Instruct-2503 |
|
pipeline_tag: image-text-to-text |
|
tags: |
|
- neuralmagic |
|
- redhat |
|
- llmcompressor |
|
- quantized |
|
- int4 |
|
--- |
|
<h1 style="display: flex; align-items: center; gap: 10px; margin: 0;"> |
|
Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16 |
|
<img src="https://www.redhat.com/rhdc/managed-files/Catalog-Validated_model_0.png" alt="Model Icon" width="40" style="margin: 0; padding: 0;" /> |
|
</h1> |
|
|
|
<a href="https://www.redhat.com/en/products/ai/validated-models" target="_blank" style="margin: 0; padding: 0;"> |
|
<img src="https://www.redhat.com/rhdc/managed-files/Validated_badge-Dark.png" alt="Validated Badge" width="250" style="margin: 0; padding: 0;" /> |
|
</a> |
|
|
|
## Model Overview |
|
- **Model Architecture:** Mistral3ForConditionalGeneration |
|
- **Input:** Text / Image |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** INT4 |
|
- **Intended Use Cases:** It is ideal for: |
|
- Fast-response conversational agents. |
|
- Low-latency function calling. |
|
- Subject matter experts via fine-tuning. |
|
- Local inference for hobbyists and organizations handling sensitive data. |
|
- Programming and math reasoning. |
|
- Long document understanding. |
|
- Visual understanding. |
|
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages not officially supported by the model. |
|
- **Release Date:** 04/15/2025 |
|
- **Version:** 1.0 |
|
- **Model Developers:** Red Hat (Neural Magic) |
|
|
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights of [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503) to INT4 data type. |
|
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%. |
|
|
|
Only the weights of the linear operators within transformers blocks are quantized. |
|
Weights are quantized using a symmetric per-group scheme, with group size 128. |
|
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. |
|
|
|
|
|
## Deployment |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from vllm import LLM, SamplingParams |
|
from transformers import AutoProcessor |
|
|
|
model_id = "RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16" |
|
number_gpus = 1 |
|
|
|
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
messages = [{"role": "user", "content": "Give me a short introduction to large language model."}] |
|
|
|
prompts = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) |
|
|
|
llm = LLM(model=model_id, tensor_parallel_size=number_gpus) |
|
|
|
outputs = llm.generate(prompts, sampling_params) |
|
|
|
generated_text = outputs[0].outputs[0].text |
|
print(generated_text) |
|
``` |
|
|
|
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
<details> |
|
<summary>Deploy on <strong>Red Hat AI Inference Server</strong></summary> |
|
|
|
```bash |
|
podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \ |
|
--ipc=host \ |
|
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \ |
|
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \ |
|
--name=vllm \ |
|
registry.access.redhat.com/rhaiis/rh-vllm-cuda \ |
|
vllm serve \ |
|
--tensor-parallel-size 8 \ |
|
--max-model-len 32768 \ |
|
--enforce-eager --model RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16 |
|
``` |
|
See [Red Hat AI Inference Server documentation](https://docs.redhat.com/en/documentation/red_hat_ai_inference_server/) for more details. |
|
</details> |
|
|
|
<details> |
|
<summary>Deploy on <strong>Red Hat Enterprise Linux AI</strong></summary> |
|
|
|
```bash |
|
# Download model from Red Hat Registry via docker |
|
# Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified. |
|
ilab model download --repository docker://registry.redhat.io/rhelai1/mistral-small-3-1-24b-instruct-2503-quantized-w4a16:1.5 |
|
``` |
|
|
|
```bash |
|
# Serve model via ilab |
|
ilab model serve --model-path ~/.cache/instructlab/models/mistral-small-3-1-24b-instruct-2503-quantized-w4a16 |
|
|
|
# Chat with model |
|
ilab model chat --model ~/.cache/instructlab/models/mistral-small-3-1-24b-instruct-2503-quantized-w4a16 |
|
``` |
|
See [Red Hat Enterprise Linux AI documentation](https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_ai/1.4) for more details. |
|
</details> |
|
|
|
<details> |
|
<summary>Deploy on <strong>Red Hat Openshift AI</strong></summary> |
|
|
|
```python |
|
# Setting up vllm server with ServingRuntime |
|
# Save as: vllm-servingruntime.yaml |
|
apiVersion: serving.kserve.io/v1alpha1 |
|
kind: ServingRuntime |
|
metadata: |
|
name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name |
|
annotations: |
|
openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe |
|
opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]' |
|
labels: |
|
opendatahub.io/dashboard: 'true' |
|
spec: |
|
annotations: |
|
prometheus.io/port: '8080' |
|
prometheus.io/path: '/metrics' |
|
multiModel: false |
|
supportedModelFormats: |
|
- autoSelect: true |
|
name: vLLM |
|
containers: |
|
- name: kserve-container |
|
image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm |
|
command: |
|
- python |
|
- -m |
|
- vllm.entrypoints.openai.api_server |
|
args: |
|
- "--port=8080" |
|
- "--model=/mnt/models" |
|
- "--served-model-name={{.Name}}" |
|
env: |
|
- name: HF_HOME |
|
value: /tmp/hf_home |
|
ports: |
|
- containerPort: 8080 |
|
protocol: TCP |
|
``` |
|
|
|
```python |
|
# Attach model to vllm server. This is an NVIDIA template |
|
# Save as: inferenceservice.yaml |
|
apiVersion: serving.kserve.io/v1beta1 |
|
kind: InferenceService |
|
metadata: |
|
annotations: |
|
openshift.io/display-name: mistral-small-3-1-24b-instruct-2503-quantized-w4a16 # OPTIONAL CHANGE |
|
serving.kserve.io/deploymentMode: RawDeployment |
|
name: mistral-small-3-1-24b-instruct-2503-quantized-w4a16 # specify model name. This value will be used to invoke the model in the payload |
|
labels: |
|
opendatahub.io/dashboard: 'true' |
|
spec: |
|
predictor: |
|
maxReplicas: 1 |
|
minReplicas: 1 |
|
model: |
|
modelFormat: |
|
name: vLLM |
|
name: '' |
|
resources: |
|
limits: |
|
cpu: '2' # this is model specific |
|
memory: 8Gi # this is model specific |
|
nvidia.com/gpu: '1' # this is accelerator specific |
|
requests: # same comment for this block |
|
cpu: '1' |
|
memory: 4Gi |
|
nvidia.com/gpu: '1' |
|
runtime: vllm-cuda-runtime # must match the ServingRuntime name above |
|
storageUri: oci://registry.redhat.io/rhelai1/modelcar-mistral-small-3-1-24b-instruct-2503-quantized-w4a16:1.5 |
|
tolerations: |
|
- effect: NoSchedule |
|
key: nvidia.com/gpu |
|
operator: Exists |
|
``` |
|
|
|
```bash |
|
# make sure first to be in the project where you want to deploy the model |
|
# oc project <project-name> |
|
|
|
# apply both resources to run model |
|
|
|
# Apply the ServingRuntime |
|
oc apply -f vllm-servingruntime.yaml |
|
|
|
# Apply the InferenceService |
|
oc apply -f qwen-inferenceservice.yaml |
|
``` |
|
|
|
```python |
|
# Replace <inference-service-name> and <cluster-ingress-domain> below: |
|
# - Run `oc get inferenceservice` to find your URL if unsure. |
|
|
|
# Call the server using curl: |
|
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions |
|
-H "Content-Type: application/json" \ |
|
-d '{ |
|
"model": "mistral-small-3-1-24b-instruct-2503-quantized-w4a16", |
|
"stream": true, |
|
"stream_options": { |
|
"include_usage": true |
|
}, |
|
"max_tokens": 1, |
|
"messages": [ |
|
{ |
|
"role": "user", |
|
"content": "How can a bee fly when its wings are so small?" |
|
} |
|
] |
|
}' |
|
|
|
``` |
|
|
|
See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details. |
|
</details> |
|
|
|
|
|
## Creation |
|
|
|
<details> |
|
<summary>Creation details</summary> |
|
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. |
|
|
|
|
|
```python |
|
from transformers import AutoProcessor |
|
from llmcompressor.modifiers.quantization import GPTQModifier |
|
from llmcompressor.transformers import oneshot |
|
from llmcompressor.transformers.tracing import TraceableMistral3ForConditionalGeneration |
|
from datasets import load_dataset, interleave_datasets |
|
from PIL import Image |
|
import io |
|
|
|
# Load model |
|
model_stub = "mistralai/Mistral-Small-3.1-24B-Instruct-2503" |
|
model_name = model_stub.split("/")[-1] |
|
|
|
num_text_samples = 1024 |
|
num_vision_samples = 1024 |
|
max_seq_len = 8192 |
|
|
|
processor = AutoProcessor.from_pretrained(model_stub) |
|
|
|
model = TraceableMistral3ForConditionalGeneration.from_pretrained( |
|
model_stub, |
|
device_map="auto", |
|
torch_dtype="auto", |
|
) |
|
|
|
# Text-only data subset |
|
def preprocess_text(example): |
|
input = { |
|
"text": processor.apply_chat_template( |
|
example["messages"], |
|
add_generation_prompt=False, |
|
), |
|
"images": None, |
|
} |
|
tokenized_input = processor(**input, max_length=max_seq_len, truncation=True) |
|
tokenized_input["pixel_values"] = tokenized_input.get("pixel_values", None) |
|
tokenized_input["image_sizes"] = tokenized_input.get("image_sizes", None) |
|
return tokenized_input |
|
|
|
dst = load_dataset("neuralmagic/calibration", name="LLM", split="train").select(range(num_text_samples)) |
|
dst = dst.map(preprocess_text, remove_columns=dst.column_names) |
|
|
|
# Text + vision data subset |
|
def preprocess_vision(example): |
|
messages = [] |
|
image = None |
|
for message in example["messages"]: |
|
message_content = [] |
|
for content in message["content"]: |
|
if content["type"] == "text": |
|
message_content.append({"type": "text", "text": content["text"]}) |
|
else: |
|
message_content.append({"type": "image"}) |
|
image = Image.open(io.BytesIO(content["image"])) |
|
|
|
messages.append( |
|
{ |
|
"role": message["role"], |
|
"content": message_content, |
|
} |
|
) |
|
|
|
input = { |
|
"text": processor.apply_chat_template( |
|
messages, |
|
add_generation_prompt=False, |
|
), |
|
"images": image, |
|
} |
|
tokenized_input = processor(**input, max_length=max_seq_len, truncation=True) |
|
tokenized_input["pixel_values"] = tokenized_input.get("pixel_values", None) |
|
tokenized_input["image_sizes"] = tokenized_input.get("image_sizes", None) |
|
return tokenized_input |
|
|
|
dsv = load_dataset("neuralmagic/calibration", name="VLM", split="train").select(range(num_vision_samples)) |
|
dsv = dsv.map(preprocess_vision, remove_columns=dsv.column_names) |
|
|
|
# Interleave subsets |
|
ds = interleave_datasets((dsv, dst)) |
|
|
|
# Configure the quantization algorithm and scheme |
|
recipe = GPTQModifier( |
|
ignore=["language_model.lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"], |
|
sequential_targets=["MistralDecoderLayer"], |
|
dampening_frac=0.01, |
|
targets="Linear", |
|
scheme="W4A16", |
|
) |
|
|
|
# Define data collator |
|
def data_collator(batch): |
|
import torch |
|
assert len(batch) == 1 |
|
collated = {} |
|
for k, v in batch[0].items(): |
|
if v is None: |
|
continue |
|
if k == "input_ids": |
|
collated[k] = torch.LongTensor(v) |
|
elif k == "pixel_values": |
|
collated[k] = torch.tensor(v, dtype=torch.bfloat16) |
|
else: |
|
collated[k] = torch.tensor(v) |
|
return collated |
|
|
|
|
|
# Apply quantization |
|
oneshot( |
|
model=model, |
|
dataset=ds, |
|
recipe=recipe, |
|
max_seq_length=max_seq_len, |
|
data_collator=data_collator, |
|
num_calibration_samples=num_text_samples + num_vision_samples, |
|
) |
|
|
|
# Save to disk in compressed-tensors format |
|
save_path = model_name + "-quantized.w4a16" |
|
model.save_pretrained(save_path) |
|
processor.save_pretrained(save_path) |
|
print(f"Model and tokenizer saved to: {save_path}") |
|
``` |
|
</details> |
|
|
|
|
|
|
|
## Evaluation |
|
|
|
The model was evaluated on the OpenLLM leaderboard tasks (version 1), MMLU-pro, GPQA, HumanEval and MBPP. |
|
Non-coding tasks were evaluated with [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), whereas coding tasks were evaluated with a fork of [evalplus](https://github.com/neuralmagic/evalplus). |
|
[vLLM](https://docs.vllm.ai/en/stable/) is used as the engine in all cases. |
|
|
|
<details> |
|
<summary>Evaluation details</summary> |
|
|
|
**MMLU** |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \ |
|
--tasks mmlu \ |
|
--num_fewshot 5 \ |
|
--apply_chat_template\ |
|
--fewshot_as_multiturn \ |
|
--batch_size auto |
|
``` |
|
|
|
**ARC Challenge** |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \ |
|
--tasks arc_challenge \ |
|
--num_fewshot 25 \ |
|
--apply_chat_template\ |
|
--fewshot_as_multiturn \ |
|
--batch_size auto |
|
``` |
|
|
|
**GSM8k** |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.9,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \ |
|
--tasks gsm8k \ |
|
--num_fewshot 8 \ |
|
--apply_chat_template\ |
|
--fewshot_as_multiturn \ |
|
--batch_size auto |
|
``` |
|
|
|
**Hellaswag** |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \ |
|
--tasks hellaswag \ |
|
--num_fewshot 10 \ |
|
--apply_chat_template\ |
|
--fewshot_as_multiturn \ |
|
--batch_size auto |
|
``` |
|
|
|
**Winogrande** |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \ |
|
--tasks winogrande \ |
|
--num_fewshot 5 \ |
|
--apply_chat_template\ |
|
--fewshot_as_multiturn \ |
|
--batch_size auto |
|
``` |
|
|
|
**TruthfulQA** |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \ |
|
--tasks truthfulqa \ |
|
--num_fewshot 0 \ |
|
--apply_chat_template\ |
|
--batch_size auto |
|
``` |
|
|
|
**MMLU-pro** |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \ |
|
--tasks mmlu_pro \ |
|
--num_fewshot 5 \ |
|
--apply_chat_template\ |
|
--fewshot_as_multiturn \ |
|
--batch_size auto |
|
``` |
|
|
|
**MMMU** |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.9,max_images=8,enable_chunk_prefill=True,tensor_parallel_size=2 \ |
|
--tasks mmmu_val \ |
|
--apply_chat_template\ |
|
--batch_size auto |
|
``` |
|
|
|
**ChartQA** |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.9,max_images=8,enable_chunk_prefill=True,tensor_parallel_size=2 \ |
|
--tasks chartqa \ |
|
--apply_chat_template\ |
|
--batch_size auto |
|
``` |
|
|
|
**Coding** |
|
|
|
The commands below can be used for mbpp by simply replacing the dataset name. |
|
|
|
*Generation* |
|
``` |
|
python3 codegen/generate.py \ |
|
--model RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16 \ |
|
--bs 16 \ |
|
--temperature 0.2 \ |
|
--n_samples 50 \ |
|
--root "." \ |
|
--dataset humaneval |
|
|
|
``` |
|
|
|
*Sanitization* |
|
``` |
|
python3 evalplus/sanitize.py \ |
|
humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16_vllm_temp_0.2 |
|
``` |
|
|
|
*Evaluation* |
|
``` |
|
evalplus.evaluate \ |
|
--dataset humaneval \ |
|
--samples humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16_vllm_temp_0.2-sanitized |
|
``` |
|
</details> |
|
|
|
### Accuracy |
|
|
|
<table> |
|
<tr> |
|
<th>Category |
|
</th> |
|
<th>Benchmark |
|
</th> |
|
<th>Mistral-Small-3.1-24B-Instruct-2503 |
|
</th> |
|
<th>Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16<br>(this model) |
|
</th> |
|
<th>Recovery |
|
</th> |
|
</tr> |
|
<tr> |
|
<td rowspan="7" ><strong>OpenLLM v1</strong> |
|
</td> |
|
<td>MMLU (5-shot) |
|
</td> |
|
<td>80.67 |
|
</td> |
|
<td>79.74 |
|
</td> |
|
<td>98.9% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>ARC Challenge (25-shot) |
|
</td> |
|
<td>72.78 |
|
</td> |
|
<td>72.18 |
|
</td> |
|
<td>99.2% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>GSM-8K (5-shot, strict-match) |
|
</td> |
|
<td>58.68 |
|
</td> |
|
<td>59.59 |
|
</td> |
|
<td>101.6% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Hellaswag (10-shot) |
|
</td> |
|
<td>83.70 |
|
</td> |
|
<td>83.25 |
|
</td> |
|
<td>99.5% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Winogrande (5-shot) |
|
</td> |
|
<td>83.74 |
|
</td> |
|
<td>83.43 |
|
</td> |
|
<td>99.6% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>TruthfulQA (0-shot, mc2) |
|
</td> |
|
<td>70.62 |
|
</td> |
|
<td>69.56 |
|
</td> |
|
<td>98.5% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td><strong>Average</strong> |
|
</td> |
|
<td><strong>75.03</strong> |
|
</td> |
|
<td><strong>74.63</strong> |
|
</td> |
|
<td><strong>99.5%</strong> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="3" ><strong></strong> |
|
</td> |
|
<td>MMLU-Pro (5-shot) |
|
</td> |
|
<td>67.25 |
|
</td> |
|
<td>66.56 |
|
</td> |
|
<td>99.0% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>GPQA CoT main (5-shot) |
|
</td> |
|
<td>42.63 |
|
</td> |
|
<td>47.10 |
|
</td> |
|
<td>110.5% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>GPQA CoT diamond (5-shot) |
|
</td> |
|
<td>45.96 |
|
</td> |
|
<td>44.95 |
|
</td> |
|
<td>97.80% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="4" ><strong>Coding</strong> |
|
</td> |
|
<td>HumanEval pass@1 |
|
</td> |
|
<td>84.70 |
|
</td> |
|
<td>84.60 |
|
</td> |
|
<td>99.9% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>HumanEval+ pass@1 |
|
</td> |
|
<td>79.50 |
|
</td> |
|
<td>79.90 |
|
</td> |
|
<td>100.5% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>MBPP pass@1 |
|
</td> |
|
<td>71.10 |
|
</td> |
|
<td>70.10 |
|
</td> |
|
<td>98.6% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>MBPP+ pass@1 |
|
</td> |
|
<td>60.60 |
|
</td> |
|
<td>60.70 |
|
</td> |
|
<td>100.2% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="2" ><strong>Vision</strong> |
|
</td> |
|
<td>MMMU (0-shot) |
|
</td> |
|
<td>52.11 |
|
</td> |
|
<td>50.11 |
|
</td> |
|
<td>96.2% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>ChartQA (0-shot) |
|
</td> |
|
<td>81.36 |
|
</td> |
|
<td>80.92 |
|
</td> |
|
<td>99.5% |
|
</td> |
|
</tr> |
|
<tr> |
|
</table> |
|
|
|
|