File size: 6,804 Bytes
e978130
 
 
 
 
 
 
 
 
 
a8dd501
 
 
 
 
 
 
e978130
 
deee1bb
e978130
f5bd2d3
deee1bb
 
 
 
 
 
 
 
 
 
f5bd2d3
 
deee1bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5bd2d3
deee1bb
f5bd2d3
 
 
 
 
 
 
 
 
 
deee1bb
 
f5bd2d3
deee1bb
f5bd2d3
deee1bb
 
f5bd2d3
deee1bb
 
f5bd2d3
deee1bb
 
f5bd2d3
 
 
 
 
 
deee1bb
 
 
 
 
 
f5bd2d3
deee1bb
f5bd2d3
 
 
 
 
 
 
 
 
deee1bb
f5bd2d3
deee1bb
f5bd2d3
 
 
 
 
 
 
 
 
 
 
deee1bb
f5bd2d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deee1bb
f5bd2d3
deee1bb
f5bd2d3
 
 
 
 
 
 
 
deee1bb
 
f5bd2d3
deee1bb
f5bd2d3
 
 
 
 
 
deee1bb
 
 
f5bd2d3
 
 
 
 
 
 
 
deee1bb
 
 
 
 
f5bd2d3
 
deee1bb
 
f5bd2d3
 
deee1bb
 
 
f5bd2d3
 
 
 
deee1bb
f5bd2d3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
---
base_model: unsloth/gemma-3n-e2b-it-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3n
- trl
language:
- en
license: apache-2.0
datasets:
- Srinivasmec26/Educational-Flashcards-for-Global-Learners
- Srinivasmec26/Task-Reminders-for-Education-and-Professionals
- Srinivasmec26/Multidisciplinary-Educational-Summaries
- Srinivasmec26/Structured-Todo-Lists-for-Learning-and-Projects
library_name: adapter-transformers
---

# MindSlate: Fine-tuned Gemma-3B for Personal Knowledge Management

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="250"/>](https://github.com/unslothai/unsloth)

## Model Description

**MindSlate** is a fine-tuned version of Google's Gemma-3B model, optimized for personal knowledge management tasks including flashcard generation, reminder processing, content summarization, and task management. The model was trained using Unsloth's efficient fine-tuning techniques for 2x faster training.

- **Architecture**: Gemma-3B with LoRA adapters
- **Model type**: Causal Language Model
- **Fine-tuning method**: 4-bit QLoRA
- **Languages**: English
- **License**: Apache 2.0
- **Developed by**: [Srinivas Nampalli](https://www.linkedin.com/in/srinivas-nampalli/)
- **Finetuned from**: [unsloth/gemma-3b-E2B-it-unsloth-bnb-4bit](https://huggingface.co/unsloth/gemma-3b-E2B-it-unsloth-bnb-4bit)

## Model Sources

- **Repository**: [https://github.com/Srinivasmec26/MindSlate](https://github.com/Srinivasmec26/MindSlate)
- **Base Model**: [unsloth/gemma-3b-E2B-it-unsloth-bnb-4bit](https://huggingface.co/unsloth/gemma-3b-E2B-it-unsloth-bnb-4bit)

## Uses

### Direct Use
MindSlate is designed for:
- Automatic flashcard generation from study materials
- Intelligent reminder creation
- Content summarization
- Task extraction and organization
- Personal knowledge base management

### Downstream Use
Can be integrated into:
- Educational platforms
- Productivity apps
- Note-taking applications
- Personal AI assistants

### Out-of-Scope Use
Not suitable for:
- Medical or legal advice
- High-stakes decision making
- Generating factual content without verification

## How to Get Started

```python
from unsloth import FastLanguageModel
import torch

# Load model with Unsloth optimizations
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name="Srinivasmec26/MindSlate",
    max_seq_length=2048,
    dtype=torch.float16,
    load_in_4bit=True,
)

# Set chat template
tokenizer = FastLanguageModel.get_chat_template(
    tokenizer,
    chat_template="gemma",  # Use "chatml" or other templates if needed
)

# Create prompt
messages = [
    {"role": "user", "content": "Convert to flashcard: Neural networks are computational models..."},
]

# Generate response
inputs = tokenizer.apply_chat_template(
    messages,
    return_tensors="pt",
).to("cuda")

outputs = model.generate(
    **inputs, 
    max_new_tokens=256,
    temperature=0.7,
    top_p=0.95,
)
print(tokenizer.decode(outputs[0]))
```

## Training Details

### Training Data
The model was fine-tuned on a combination of structured datasets:

1. **Flashcards Dataset** (400 items):
```bibtex
@misc{educational_flashcards_2025,
  title = {Multicultural Educational Flashcards Dataset},
  author = {Srinivas, Yathi Pachauri,  Swarnim Gupta},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/datasets/Srinivasmec26/Educational-Flashcards-for-Global-Learners}
}

```

2. **Reminders Dataset** (100 items):
- *Private collection of contextual reminders*
- Format: {"input": "Meeting with team", "output": {"time": "2025-08-15 14:00", "location": "Zoom"}}
```bibtex
@misc{educational_flashcards_2025,
  title = {Multicultural Educational Flashcards Dataset},
  author = {Srinivas, Yathi Pachauri,  Swarnim Gupta},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/datasets/Srinivasmec26/Educational-Flashcards-for-Global-Learners}
}

```

3. **Summaries Dataset** (100 items):
- *Academic paper abstracts and summaries*
- Collected from arXiv and academic publications
```bibtex
@misc{knowledge_summaries_2025,
  title = {Multidisciplinary-Educational-Summaries},
  author = {Srinivas Nampalli, Yathi Pachauri, Swarnim Gupta},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/datasets/Srinivasmec26/Multidisciplinary-Educational-Summaries}
}
```

4. **Todos Dataset** (100 items):
```bibtex
@misc{academic_todos_2025,
   title = {Structured To-Do Lists for Learning and Projects},
  author = {Nampalli Srinivas, Yathi Pachauri, Swarnim Gupta},
  year = {2025},
  publisher = {Hugging Face},
  version   = {1.0},
  url = {https://huggingface.co/datasets/Srinivasmec26/Structured-Todo-Lists-for-Learning-and-Projects}
}

```

### Training Procedure
- **Preprocessing**: Standardized into `### Input: ... \n### Output: ...` format
- **Framework**: Unsloth 2025.8.1 + Hugging Face TRL
- **Hardware**: Tesla T4 GPU (16GB VRAM)
- **Training Time**: 51 minutes for 3 epochs
- **LoRA Configuration**:
  ```python
  r=64,           # LoRA rank
  lora_alpha=128, # LoRA scaling factor
  target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
                  "gate_proj", "up_proj", "down_proj"],
  ```
- **Optimizer**: AdamW 8-bit
- **Learning Rate**: 2e-4 with linear decay

## Evaluation
*Comprehensive benchmark results will be uploaded in v1.1. Preliminary metrics:*

| Metric               | Value  |
|----------------------|--------|
| **Training Loss**    | 0.1284 |
| **Perplexity**       | TBD    |
| **Task Accuracy**    | TBD    |
| **Inference Speed**  | 42 tokens/sec (T4) |

## Technical Specifications

| Parameter            | Value               |
|----------------------|---------------------|
| Model Size           | 3B parameters       |
| Quantization         | 4-bit (bnb)         |
| Max Sequence Length  | 2048 tokens         |
| Fine-tuned Params    | 1.66% (91.6M)       |
| Precision            | BF16/FP16 mixed     |
| Architecture         | Transformer Decoder |

## Citation

```bibtex
@misc{mindslate2025,
  author = {Srinivas Nampalli },
  title = {MindSlate: Efficient Personal Knowledge Management with Gemma-3B},
  year = {2025},
  publisher = {Hugging Face},
  howpublished = {\url{https://huggingface.co/Srinivasmec26/MindSlate}},
  note = {Fine-tuned using Unsloth for efficient training}
}
```

## Acknowledgements
- [Unsloth](https://github.com/unslothai/unsloth) for 2x faster fine-tuning
- Google for the [Gemma 3n](https://huggingface.co/sparkreaderapp/gemma-3n-E2B-it) base model
- Hugging Face for [TRL](https://huggingface.co/docs/trl) library

## Model Card Contact
For questions and collaborations:
- Srinivas Nampalli: [LinkedIn](https://www.linkedin.com/in/srinivas-nampalli/)