|
--- |
|
library_name: transformers |
|
license: other |
|
base_model: nvidia/segformer-b3-finetuned-cityscapes-1024-1024 |
|
tags: |
|
- image-segmentation |
|
- vision |
|
- generated_from_trainer |
|
model-index: |
|
- name: route_background_semantic |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# route_background_semantic |
|
|
|
This model is a fine-tuned version of [nvidia/segformer-b3-finetuned-cityscapes-1024-1024](https://huggingface.co/nvidia/segformer-b3-finetuned-cityscapes-1024-1024) on the Logiroad/route_background_semantic dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2360 |
|
- Mean Iou: 0.1916 |
|
- Mean Accuracy: 0.2447 |
|
- Overall Accuracy: 0.2962 |
|
- Accuracy Unlabeled: nan |
|
- Accuracy Découpe: 0.2865 |
|
- Accuracy Reflet météo: 0.0 |
|
- Accuracy Autre réparation: 0.3437 |
|
- Accuracy Glaçage ou ressuage: 0.0386 |
|
- Accuracy Emergence: 0.5549 |
|
- Iou Unlabeled: 0.0 |
|
- Iou Découpe: 0.2515 |
|
- Iou Reflet météo: 0.0 |
|
- Iou Autre réparation: 0.3230 |
|
- Iou Glaçage ou ressuage: 0.0369 |
|
- Iou Emergence: 0.5379 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 1337 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: polynomial |
|
- training_steps: 10000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Découpe | Accuracy Reflet météo | Accuracy Autre réparation | Accuracy Glaçage ou ressuage | Accuracy Emergence | Iou Unlabeled | Iou Découpe | Iou Reflet météo | Iou Autre réparation | Iou Glaçage ou ressuage | Iou Emergence | |
|
|:-------------:|:------:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:---------------------:|:-------------------------:|:----------------------------:|:------------------:|:-------------:|:-----------:|:----------------:|:--------------------:|:-----------------------:|:-------------:| |
|
| 0.2715 | 1.0 | 2427 | 0.2682 | 0.0521 | 0.0669 | 0.1828 | nan | 0.0813 | 0.0 | 0.2533 | 0.0 | 0.0 | 0.0 | 0.0766 | 0.0 | 0.2362 | 0.0 | 0.0 | |
|
| 0.2815 | 2.0 | 4854 | 0.2682 | 0.1165 | 0.1436 | 0.1593 | nan | 0.1108 | 0.0 | 0.1982 | 0.0 | 0.4090 | 0.0 | 0.1014 | 0.0 | 0.1916 | 0.0 | 0.4057 | |
|
| 0.2638 | 3.0 | 7281 | 0.2420 | 0.1664 | 0.2100 | 0.2564 | nan | 0.2346 | 0.0 | 0.3039 | 0.0030 | 0.5085 | 0.0 | 0.2128 | 0.0 | 0.2854 | 0.0030 | 0.4973 | |
|
| 0.2703 | 4.0 | 9708 | 0.2333 | 0.1941 | 0.2475 | 0.3074 | nan | 0.2843 | 0.0 | 0.3612 | 0.0446 | 0.5473 | 0.0 | 0.2512 | 0.0 | 0.3383 | 0.0429 | 0.5320 | |
|
| 0.2197 | 4.1203 | 10000 | 0.2360 | 0.1916 | 0.2447 | 0.2962 | nan | 0.2865 | 0.0 | 0.3437 | 0.0386 | 0.5549 | 0.0 | 0.2515 | 0.0 | 0.3230 | 0.0369 | 0.5379 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.1 |
|
- Pytorch 2.3.0 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|