File size: 10,282 Bytes
c266894 5d8d9be aff195b 1fc880b 0bcf85a 7b85151 c266894 5d8d9be 2df1474 c266894 5d8d9be c266894 5d8d9be c266894 5d8d9be c266894 5d8d9be c266894 5d8d9be c266894 5d8d9be c266894 5d8d9be c266894 5d8d9be c266894 5d8d9be c266894 5d8d9be c266894 5d8d9be c266894 5d8d9be c266894 5d8d9be c266894 5d8d9be c266894 5d8d9be c266894 5d8d9be c266894 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
---
license: mit
datasets:
- uoft-cs/cifar10
language:
- en
metrics:
tags:
- Image
- Classification
- PyTorch
pipeline_tag: image-classification
---
# Install necessary libraries
```python
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay
import matplotlib.pyplot as plt
from huggingface_hub import hf_hub_download
# Set device to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f'Using device: {device}')
# Define Hugging Face username and repository name for the best model
username = "Vijayendra"
model_name_best = "QST-CIFAR10-BestModel"
# Directory where the models will be downloaded
save_dir = './hf_models'
os.makedirs(save_dir, exist_ok=True)
# Data normalization for CIFAR-10
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616))
])
# Load CIFAR-10 test set
cifar10_test = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
test_loader = DataLoader(cifar10_test, batch_size=128, shuffle=False, num_workers=4)
# Define Patch Embedding with optional convolutional layers
class PatchEmbedding(nn.Module):
def __init__(self, img_size=32, patch_size=4, in_channels=3, embed_dim=256):
super(PatchEmbedding, self).__init__()
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = (img_size // patch_size) ** 2
self.embed_dim = embed_dim
self.conv_layers = nn.Sequential(
nn.Conv2d(in_channels, embed_dim // 2, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(embed_dim // 2),
nn.ReLU(),
nn.Conv2d(embed_dim // 2, embed_dim, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(embed_dim),
nn.ReLU(),
)
self.proj = nn.Conv2d(embed_dim, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
x = self.conv_layers(x)
x = self.proj(x) # Shape: [batch_size, embed_dim, num_patches_root, num_patches_root]
x = x.flatten(2) # Shape: [batch_size, embed_dim, num_patches]
x = x.transpose(1, 2) # Shape: [batch_size, num_patches, embed_dim]
return x
# Sequential Attention Block
class SequentialAttentionBlock(nn.Module):
def __init__(self, embed_dim, num_heads, dropout=0.1):
super(SequentialAttentionBlock, self).__init__()
self.attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout)
self.norm = nn.LayerNorm(embed_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
seq_length = x.size(0)
attn_mask = torch.triu(torch.ones(seq_length, seq_length), diagonal=1).bool().to(x.device)
attn_output, _ = self.attention(x, x, x, attn_mask=attn_mask)
x = self.norm(x + attn_output)
return self.dropout(x)
# Cyclic Attention Block with CRF
class CyclicAttentionBlockCRF(nn.Module):
def __init__(self, embed_dim, num_heads, dropout=0.1):
super(CyclicAttentionBlockCRF, self).__init__()
self.attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout)
self.norm = nn.LayerNorm(embed_dim)
self.dropout = nn.Dropout(dropout)
self.cyclic_operator = nn.Linear(embed_dim, embed_dim, bias=False)
def forward(self, x):
attn_output, _ = self.attention(x, x, x)
x = self.norm(x + attn_output)
cyclic_term = self.cyclic_alignment(attn_output)
x = self.norm(x + cyclic_term)
return self.dropout(x)
def cyclic_alignment(self, attn_output):
cyclic_term = self.cyclic_operator(attn_output)
cyclic_term = torch.roll(cyclic_term, shifts=1, dims=0)
return cyclic_term
# Combined Transformer Block with additional multi-headed self-attention and sequential attention
class CombinedTransformerBlock(nn.Module):
def __init__(self, embed_dim, num_heads, ff_dim, dropout=0.1, dropconnect_p=0.5):
super(CombinedTransformerBlock, self).__init__()
self.initial_attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropconnect_p)
self.norm0 = nn.LayerNorm(embed_dim)
self.attention1 = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropconnect_p)
self.norm1 = nn.LayerNorm(embed_dim)
self.dropconnect = nn.Dropout(dropconnect_p)
self.cyclic_attention = CyclicAttentionBlockCRF(embed_dim, num_heads, dropout)
self.sequential_attention = SequentialAttentionBlock(embed_dim, num_heads, dropout)
self.attention2 = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropconnect_p)
self.norm2 = nn.LayerNorm(embed_dim)
self.ff = nn.Sequential(
nn.Linear(embed_dim, ff_dim),
nn.ReLU(),
nn.Linear(ff_dim, embed_dim)
)
self.norm3 = nn.LayerNorm(embed_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
attn_output, _ = self.initial_attention(x, x, x)
x = self.norm0(x + attn_output)
attn_output, _ = self.attention1(x, x, x)
x = self.norm1(x + attn_output)
x = self.dropconnect(x)
x = self.cyclic_attention(x)
x = self.sequential_attention(x)
attn_output, _ = self.attention2(x, x, x)
x = self.norm2(x + attn_output)
ff_output = self.ff(x)
x = self.norm3(x + self.dropout(ff_output))
return x
# Decoder Block
class DecoderBlock(nn.Module):
def __init__(self, embed_dim, num_heads, ff_dim, dropout=0.1):
super(DecoderBlock, self).__init__()
self.attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout)
self.norm1 = nn.LayerNorm(embed_dim)
self.cyclic_attention = CyclicAttentionBlockCRF(embed_dim, num_heads, dropout)
self.ff = nn.Sequential(
nn.Linear(embed_dim, ff_dim),
nn.ReLU(),
nn.Linear(ff_dim, embed_dim)
)
self.norm2 = nn.LayerNorm(embed_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, x, encoder_output):
attn_output, _ = self.attention(x, encoder_output, encoder_output)
x = self.norm1(x + attn_output)
x = self.cyclic_attention(x)
ff_output = self.ff(x)
x = self.norm2(x + self.dropout(ff_output))
return x
# Custom Transformer Model with increased depth, encoder and decoder blocks, and learnable positional encodings
class CustomTransformer(nn.Module):
def __init__(self, embed_dim, num_heads, ff_dim, num_classes, num_layers=6, dropconnect_p=0.5):
super(CustomTransformer, self).__init__()
self.embed_dim = embed_dim
self.num_patches = (32 // 4) ** 2 # Assuming patch_size=4
self.patch_embedding = PatchEmbedding(embed_dim=embed_dim)
self.positional_encoding = nn.Parameter(torch.zeros(1, self.num_patches, embed_dim))
nn.init.trunc_normal_(self.positional_encoding, std=0.02)
# Encoder blocks
self.encoder_blocks = nn.ModuleList([
CombinedTransformerBlock(embed_dim, num_heads, ff_dim, dropconnect_p=dropconnect_p)
for _ in range(num_layers)
])
# Decoder blocks to match saved model structure
self.decoder_blocks = nn.ModuleList([
DecoderBlock(embed_dim, num_heads, ff_dim)
for _ in range(num_layers)
])
self.fc = nn.Linear(embed_dim, num_classes)
def forward(self, x):
x = self.patch_embedding(x) # Shape: [batch_size, num_patches, embed_dim]
x += self.positional_encoding
x = x.transpose(0, 1) # Shape: [num_patches, batch_size, embed_dim]
# Pass through encoder blocks
encoder_output = x
for encoder in self.encoder_blocks:
encoder_output = encoder(encoder_output)
# Pass through decoder blocks
decoder_output = encoder_output
for decoder in self.decoder_blocks:
decoder_output = decoder(decoder_output, encoder_output)
decoder_output = decoder_output.mean(dim=0) # Shape: [batch_size, embed_dim]
logits = self.fc(decoder_output)
return logits
# Initialize the best model for evaluation
embed_dim = 512
num_heads = 32
ff_dim = 1024
num_classes = 10
num_layers = 10 # Ensure it matches the architecture
model_best = CustomTransformer(embed_dim, num_heads, ff_dim, num_classes, num_layers=num_layers).to(device)
# Download and load the best model from Hugging Face Hub
model_best_path = hf_hub_download(repo_id=f"{username}/{model_name_best}", filename="model_best.pth")
model_best.load_state_dict(torch.load(model_best_path, map_location=device))
model_best.eval() # Set to evaluation mode
# Evaluate the best model directly on the test set
test_labels = []
test_preds_best = []
with torch.no_grad():
for images_test, labels_test in test_loader:
images_test = images_test.to(device)
logits_best = model_best(images_test)
probs_best = F.softmax(logits_best, dim=1).cpu().numpy() # Convert to probabilities
# Store predictions and labels
test_preds_best.extend(probs_best)
test_labels.extend(labels_test.numpy())
# Convert test set predictions to labels
test_preds_best_labels = np.argmax(test_preds_best, axis=1)
test_labels = np.array(test_labels)
# Calculate and print test accuracy
test_accuracy = accuracy_score(test_labels, test_preds_best_labels)
print(f'Test Accuracy of Best Model: {test_accuracy * 100:.2f}%')
# Plot the confusion matrix for the test set predictions
cm = confusion_matrix(test_labels, test_preds_best_labels)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=cifar10_test.classes)
disp.plot(cmap=plt.cm.Blues)
# Rotate the x-axis labels to prevent overlapping
plt.xticks(rotation=45, ha='right')
plt.title('Confusion Matrix for Best Model on CIFAR-10 Test Set')
plt.savefig(os.path.join(save_dir, 'best_model_confusion_matrix.png'))
plt.show()
|