BitTransformerLM / BitTransformerLM_full_assessment.md
WCNegentropy's picture
🤖 Updated BitTransformerLM from development space
36c78b1 verified
|
raw
history blame
22.2 kB
# BitTransformerLM Deep-Dive Assessment Report
*(Comprehensive technical review and optimization roadmap)*
---
## Completed Tasks
- [x] 3.1 Cosine noise schedule option
- [x] 3.2 Post-process parity correction
- [x] 2.3 Expose checkpoint & reversible toggles
- [x] 2.2 Update deprecated AMP call
- [x] 5.2 Metric-drift alerts
- [x] 1.3 Expand README / docstrings for telemetry & ACT
- [x] 3.3 Safety-gate soft-retry
- [x] 7.1 Add ACT halting unit test
- [x] 4.1 Integrate performance-based scaling
- [x] 4.2 Learning-rate decay on resize
- [x] 3.4 Chunked attention logging toggle
- [x] 3.5 Quantization-aware training toggle
- [x] 7.2 Quantization & QAT tests
- [x] 4.3 Dashboard flag wiring
- [x] 7.3 Dashboard smoke test
- [x] 2.1 Unify flag names & deprecate legacy scale script
- [x] 5.1 Telemetry λ and floor UI
- [x] 5.3 Cluster-based distillation data
- [x] 6.1 Allow width scaling in collapse loop
- [x] 6.2 Save distilled metrics summary
## 1. Overview of BitTransformerLM Architecture and Recent Additions
BitTransformerLM is a **reversible Transformer** that operates **directly on binary sequences (bits)**. The immutable core uses multi-head self-attention on bit embeddings with sinusoidal positional encoding and already supports:
* Safety-centric telemetry (negentropy *K*, LZ complexity *C*, symbiosis *S*)
* Run-length compression / decompression paths
* Progressive scaling (depth & width) with reversible layers + gradient checkpointing
* Quantization (dynamic INT8 + optional 4‑bit QAT)
* A non‑causal **Diffusion‑LM mode** for bidirectional, denoising generation
* Dashboard, MCP server, and FSDP/pipeline hooks for distributed or edge deployment
Recent commits locked in deterministic environment setup (ChatGPT Codex container), removed insecure `/exec` endpoints, and added a reliable *course‑to‑fine* diffusion sampler stub. The model now installs and trains reproducibly on CPU‑only hosts, yet scales to multi‑GPU with FSDP.
---
## 2. Consistent Naming & Documentation
* Codebase generally follows *snake_case* functions / *CamelCase* classes, but CLI flags & helper scripts drift (e.g. `--diffusion` vs internal `causal=False`).
**Action:** unify flag names & docstrings; deprecate redundant scripts (`progressive_scaleup.py` vs `integration_schedule.py`).
* README and inline docs lack quick intuition for *K, C, S* metrics, ACT, and reversible internals.
**Action:** add short metric primers and ACT demo snippets; update `AGENTS.md` quick‑start table.
---
## 3. Optimizing Module Interactions & Performance
| Area | Current State | Optimization | Outcome |
|------|---------------|--------------|---------|
| **Chunked attention** ✅ | Saves RAM but reconstructs full *T×T* matrix for telemetry | Skip full matrix when `chunk_size < seq_len` and user disables `full_attn_logging` | Same metrics, big memory + speed win on long sequences |
| **PyTorch 2 features** | Uses `torch.compile` & BF16 autocast inconsistently | Standardize `torch.amp.autocast(device_type="cpu", dtype=torch.bfloat16)`; wrap long loops | 10‑20 % CPU speed‑up, no deprecation warnings |
| **Reversible + checkpoint** | Always checkpoints → slower when RAM ample | Expose `--no-checkpoint` flag; document trade‑offs | User‑selectable speed vs memory |
| **Quantization** ✅ | INT8 dynamic works; 4‑bit QAT unused | Add `--qat` toggle in training scripts & unit‑test tiny model | Edge‑ready 4‑bit weights validated |
| **Compression loops** | Python for‑loops per sample | Batch or vectorized RLE when batch≫8 | Marginal speed‑up for large batches |
---
## 4. Fully Leveraging Diffusion Mode
1. [x] **Noise schedule** – switchable linear ▸ cosine ▸ exponential; expose `--noise-schedule`.
2. [x] **Step count** – allow 8–16 steps for high‑fidelity generation; document compute trade‑off.
3. [x] **Parity safeguard** – post‑sampling parity‑bit fix or strict parity sampling to guarantee valid bytes.
4. [x] **Training curriculum** – optional schedule: high‑noise → low‑noise over epochs; keep random‑noise fallback.
5. [x] **Safety integration** – run `hil_safe_inference(strict=False)` during diffusion; warn (not crash) on metric floor breaches.
---
## 5. Enhanced Training Workflow & Scaling Strategy
* **Adaptive scaling trigger** – adopt `progressive_scaleup.py` logic: scale only when val‑loss Δ < threshold; alternate width↔context↔depth.
* **Context extension** – use `double_length()` when plateau met; maintain chunked attention windows.
* **Warm‑up & plateau** – keep 5‑batch freeze after each expansion; add default final plateau epoch.
* **LR hygiene** – slight LR decay each scale‑up; document rationale.
---
## 6. Telemetry Metrics & Safety Integration
* **Metric coefficients** (`λ_K`, `λ_C`, `λ_S`) exposed via dashboard slider; floors (C ≥ 0.3, S ≥ 0.5) adjustable per deployment.
* **TelemetrySynthesizer** – cluster activations → representative sequences for distillation & drift detection.
* **Metric drift alert** – integrate `detect_metric_drift()` into training monitor; log if Δ > 0.2.
---
## 7. Distillation & Model Collapse Optimization
1. Use **cluster‑selected sequences** as `cluster_data` for `collapse_submodel` → better coverage.
2. Permit optional width growth (`width_scale > 1`) in iterative collapse rounds.
3. Log final vs floor metrics in `distilled_metrics.json` for audit trail.
4. Optionally auto‑invoke collapse at end of `integration_schedule` with `--auto-collapse`.
---
## 8. Additional Testing & Release Readiness
* Expand pytest suite: diffusion training/sampling, ACT halting, INT8 + QAT inference, dashboard API smoke tests.
* Add multi‑GPU CI job to validate FSDP + reversible layers.
* Strengthen debug logs: print mode (causal/diffusion/compression), scale‑up events, safety‑gate warnings.
---
## 9. Strategic Summary
BitTransformerLM already delivers an **orthogonal bundle of “firsts”**: bit‑native granularity, reversible memory efficiency, metric‑driven safety, and turnkey text diffusion.
Executing the roadmap **knits every module into a smooth, reproducible pipeline** without touching core architecture—preserving alignment while boosting usability.
**Bottom‑line:** With these refinements, BitTransformerLM becomes the reference for transparent, resource‑efficient, safety‑gated language modelling at the bit level—well beyond “just another model.”
Below is an **implementation playbook** that turns every recommendation in *“Overview of BitTransformerLM Architecture and Recent Additions”* into clear tasks and ready‑to‑copy Codex prompts. Where page numbers add context, I note them; all content is from the uploaded PDF.&#x20;
---
## 1 · Repository Consistency & Documentation
| # | Task | Key Steps | Codex Prompt (trim or expand as desired) |
| --- | -------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| 1.1 | **Audit & unify public API names** | • Scan for duplicate / mis‑matched flags (e.g. `--diffusion` vs `causal=False`).<br>• Rename or deprecate aliases; update docs. | “List every function, class, and CLI flag whose name does **not** match the style‑guide (snake\_case for funcs, CamelCase for classes) in the BitTransformerLM repo. For each, propose a single canonical name and generate the automated `git mv` or refactor patches.” |
| 1.2 | **Consolidate scaling scripts** | • Merge `progressive_scaleup.py` logic into `integration_schedule.py`.<br>• Mark redundant script as example. | “Move the performance‑based scaling criterion from `progressive_scaleup.py` into `integration_schedule.py`. Preserve existing kwargs, add `--improve‑thresh` with default 0.01. Provide diff.” |
| 1.3 | **Expand README / docstrings for telemetry & ACT** (pp. 1 ‑ 2) | • Add one‑paragraph explanations of Negentropy (K), LZ Complexity (C), Symbiosis (S), and ACT halting to README.<br>• Link to equations in code comments. | “Insert a new subsection *‘Telemetry Metrics Explained’* into README after the quick‑start block, then add in‑line docstrings for `negentropy_score`, `lz_complexity`, and `symbiosis_score` explaining ranges and typical values.” |
---
## 2 · Performance Optimizations
| # | Task | Key Steps | Codex Prompt |
| --- | ------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| 2.1 | **Vectorize chunked‑attention telemetry** (p. 2) | • Add flag `--attn‑summary`.<br>• When enabled and `chunked_attn=True`, compute per‑chunk entropy and skip full `T × T` map. | “Refactor `_chunked_attn` in `model.py` so that, if `attn_summary` is true, it returns `(attn_entropy_per_chunk, None)` instead of the stitched full map. Fall back to old behaviour otherwise. Update callers.” |
| 2.2 | **Update deprecated AMP call** | Replace `torch.cpu.amp.autocast` with `torch.amp.autocast(device_type="cpu", dtype=torch.bfloat16)` everywhere. | “Search repo for `torch.cpu.amp.autocast`, replace with the new API, and add a context‑manager wrapper `cpu_autocast` in `utils/torch_utils.py`.” |
| 2.3 | **Expose checkpoint & reversible toggles** (p. 2) | • Add CLI flags `--use-checkpoint / --no-checkpoint` and `--reversible`.<br>• Document memory/compute trade‑off. | “Modify `train.py` argparse to include mutually exclusive `--[no-]checkpoint` flags; wire to `use_checkpoint` in model init.” |
| 2.4 | **Batch run‑length encoding** (p. 3) | • Implement NumPy‑vectorised RLE for the full tensor.<br>• Fallback to Python loop if tensor < 1024 bits. | “Implement `batch_rle_encode` in `bit_io.py` using NumPy strides; write unit test comparing speed & correctness to existing per‑sequence encode.” |
---
## 3 · Diffusion‑Mode Enhancements
| # | Task | Key Steps | Codex Prompt | | |
| --- | ----------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------ |
| 3.1 | **Cosine noise schedule option** (p. 4) | • Add \`schedule="linear | cosine | exp"`arg to`diffusion\_inference\`.<br>• Default remains linear. | “Extend `diffusion_inference` to support a cosine decay of `mask_prob` over `steps`. Provide math and update docstring.” |
| 3.2 | **Post‑process parity correction** (p. 4) | • After sampling, flip each parity bit if byte parity invalid.<br>• Log number of corrections. | “Write `enforce_parity(bits)` that patches 9th bit per byte to satisfy even‑parity, return corrected seq + stats.” | | |
| 3.3 | **Safety‑gate soft‑retry** | • On failed `hil_safe_inference(strict=True)`, auto‑retry up to 3× with diffusion or random seed.<br>• Surface warning in logs. | “Wrap `hil_safe_inference` in a helper `safe_sample_with_retry`; implement exponential back‑off and logging.” | | |
---
## 4 · Adaptive Training Workflow
| # | Task | Key Steps | Codex Prompt |
| --- | ------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| 4.1 | **Integrate performance‑based scaling** (pp. 5‑6) | • Use `Δval_loss < thresh` as condition to trigger `add_layer()`/`double_width()`.<br>• Alternate occasional `double_length()` for context. | “Inside `integration_schedule.train_loop`, compute rolling val‑loss; if mean improvement < `args.improve_thresh`, call `model.scale_up(strategy=next_step)` where `next_step` cycles \[layer, width, context].” |
| 4.2 | **Learning‑rate decay on resize** | • After each scale‑up, reduce base LR by √2.<br>• Provide warm‑up of 100 steps. | “Add `adjust_learning_rate(optimizer, factor)` util; call it after every successful model expansion.” |
| 4.3 | **Dashboard flag wiring** | • Map UI toggles (compression, diffusion) to `compress_prob`, `diffusion` args in backend. | “In `dashboard_app.py`, when user toggles compression, pass `compress_prob=1.0` to `ModelManager.train()`.” |
---
## 5 · Telemetry & Safety
| # | Task | Key Steps | Codex Prompt |
| --- | -------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| 5.1 | **Expose λ coefficients and safety floors in UI** (p. 7) | • Add sliders for `λ_K`, `λ_C`, `λ_S`, `C_floor`, `S_floor`.<br>• Persist to model state. | “Add REST endpoints `/config/telemetry` (GET/POST) that read or set lambda values and floors; bind to dashboard sliders.” |
| 5.2 | **Metric‑drift alerts** (p. 8) | • After every epoch, call `detect_metric_drift(history, window=100)`; if > 0.2 drift, log & optionally halt training. | “Integrate `detect_metric_drift` into `ModelManager._log_metrics`; raise `MetricDriftWarning` when threshold exceeded.” |
| 5.3 | **Cluster‑based distillation data** (pp. 8‑9) | • Use `TelemetrySynthesizer` to pick `k` cluster representatives (default 8).<br>• Feed to `collapse_submodel`. | “Before `collapse_submodel`, run `representatives = TelemetrySynthesizer(model).cluster(train_data, k=8)`. Replace `train_bits[:64]` with `representatives`.” |
---
## 6 · Distillation / Collapse Process
| # | Task | Key Steps | Codex Prompt |
| --- | ----------------------------------------------- | ------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------- |
| 6.1 | **Allow width scaling in collapse loop** (p. 8) | • Add `width_scale` param; if metric floors unmet after deepening, double width once then retry. | “Modify `collapse_submodel`: on round‑2 failure, rebuild sub‑model with `hidden_dim *= width_scale` (default 1.5).” |
| 6.2 | **Save metrics summary** | • Extend `save_distilled_model` to write `metrics.json` with achieved vs floor values. | “Update `save_distilled_model` to dump `{‘C’:score_C, ‘S’:score_S, ‘floors’:{...}}` alongside weights.” |
---
## 7 · Testing & CI Hardening
| # | Task | Key Steps | Codex Prompt |
| --- | ------------------------------------- | ------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------- |
| 7.1 | **Add ACT halting unit test** (p. 10) | • Craft toy seq; assert `sum(halt_prob<1) < n_layers`. | “Write `tests/test_act.py` ensuring at least one layer halts early when `use_act=True, threshold=0.1`.” |
| 7.2 | **Quantization & QAT tests** | • After tiny train, run dynamic int8 + fake‑QAT path, assert same logits ±1e‑3. | “Add `pytest` case: train 2‑layer model 1 epoch, call `quantize_dynamic`, compare outputs on 10 random inputs.” |
| 7.3 | **Dashboard smoke test** | • In CI, launch Flask app with `pytest‑flask`, hit `/init`, `/train‑step`, `/infer`. | “Create `tests/test_dashboard.py` that starts server in a thread and exercises core endpoints.” |
---
## 8 · Packaging & Release
| # | Task | Key Steps | Codex Prompt |
| --- | ---------------------------------------- | ----------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------- |
| 8.1 | **Rename repository references** (p. 11) | • Replace `Test/` URL stubs with new repo slug.<br>• Update badges in README. | “Search‑replace all GitHub links from `WCNegentropy/Test` to `WCNegentropy/BitTransformerLM`; update badge SVGs.” |
| 8.2 | **PyPI build verification** | • Ensure `pyproject.toml` installs cleanly on 3.10 & 3.11 in CI. | “Add GitHub Action matrix for {macOS, ubuntu‑latest} × {3.10, 3.11}; run `pip install -e . && pytest`.” |
---
### How to Use These Prompts
**Run** unit tests; iterate if failures surface.
This checklist should bring BitTransformerLM to a polished, v1‑ready state while aligning with your NRB‑driven safety and telemetry philosophy.&#x20;