WCNegentropy's picture
πŸš€ Final optimization: Update cli_standards.py with production-ready enhancements
e2ef423 verified
raw
history blame
11.8 kB
"""
BitTransformerLM CLI Argument Standards
Unified command-line interface standards for all BitTransformerLM scripts.
This module provides standardized argument parsers and naming conventions.
"""
import argparse
from typing import Optional, Callable
class BitTransformerCLI:
"""Standardized CLI argument parser for BitTransformerLM."""
@staticmethod
def add_model_args(parser: argparse.ArgumentParser) -> None:
"""Add standard model configuration arguments."""
model_group = parser.add_argument_group('Model Configuration')
model_group.add_argument('--model-size', choices=['tiny', 'small', 'medium', 'large'],
default='small', help='Model size preset')
model_group.add_argument('--d-model', type=int, default=128,
help='Model dimension')
model_group.add_argument('--num-heads', type=int, default=8,
help='Number of attention heads')
model_group.add_argument('--num-layers', type=int, default=6,
help='Number of transformer layers')
model_group.add_argument('--dropout', type=float, default=0.1,
help='Dropout rate')
model_group.add_argument('--max-seq-len', type=int, default=512,
help='Maximum sequence length')
@staticmethod
def add_training_args(parser: argparse.ArgumentParser) -> None:
"""Add standard training arguments."""
train_group = parser.add_argument_group('Training Configuration')
train_group.add_argument('--epochs', type=int, default=10,
help='Number of training epochs')
train_group.add_argument('--batch-size', type=int, default=16,
help='Training batch size')
train_group.add_argument('--learning-rate', type=float, default=1e-3,
help='Learning rate')
train_group.add_argument('--weight-decay', type=float, default=0.01,
help='Weight decay')
train_group.add_argument('--grad-clip', type=float, default=1.0,
help='Gradient clipping threshold')
train_group.add_argument('--warmup-steps', type=int, default=100,
help='Number of warmup steps')
@staticmethod
def add_dataset_args(parser: argparse.ArgumentParser) -> None:
"""Add standard dataset arguments."""
data_group = parser.add_argument_group('Dataset Configuration')
data_group.add_argument('--dataset-name', type=str, default='synthetic',
help='Dataset name or path')
data_group.add_argument('--dataset-size', type=int, default=10000,
help='Dataset size (number of samples)')
data_group.add_argument('--seq-length', type=int, default=64,
help='Sequence length for training')
data_group.add_argument('--validation-split', type=float, default=0.1,
help='Validation split ratio')
@staticmethod
def add_safety_args(parser: argparse.ArgumentParser) -> None:
"""Add safety and telemetry arguments."""
safety_group = parser.add_argument_group('Safety & Telemetry')
safety_group.add_argument('--enable-safety-gates', action='store_true',
help='Enable safety gates during inference')
safety_group.add_argument('--min-negentropy', type=float, default=0.1,
help='Minimum negentropy threshold')
safety_group.add_argument('--max-complexity', type=float, default=0.9,
help='Maximum LZ complexity threshold')
safety_group.add_argument('--min-symbiosis', type=float, default=0.3,
help='Minimum symbiosis score threshold')
safety_group.add_argument('--telemetry-logging', action='store_true',
help='Enable detailed telemetry logging')
@staticmethod
def add_optimization_args(parser: argparse.ArgumentParser) -> None:
"""Add optimization and performance arguments."""
opt_group = parser.add_argument_group('Optimization & Performance')
opt_group.add_argument('--use-amp', action='store_true',
help='Use automatic mixed precision')
opt_group.add_argument('--gradient-checkpointing', action='store_true',
help='Use gradient checkpointing')
opt_group.add_argument('--compile-model', action='store_true',
help='Use torch.compile for optimization')
opt_group.add_argument('--chunk-size', type=int, default=None,
help='Chunk size for chunked attention')
opt_group.add_argument('--num-workers', type=int, default=4,
help='Number of data loader workers')
@staticmethod
def add_distributed_args(parser: argparse.ArgumentParser) -> None:
"""Add distributed training arguments."""
dist_group = parser.add_argument_group('Distributed Training')
dist_group.add_argument('--distributed', action='store_true',
help='Enable distributed training')
dist_group.add_argument('--world-size', type=int, default=1,
help='Number of distributed processes')
dist_group.add_argument('--rank', type=int, default=0,
help='Process rank for distributed training')
dist_group.add_argument('--backend', choices=['nccl', 'gloo'], default='nccl',
help='Distributed backend')
@staticmethod
def add_io_args(parser: argparse.ArgumentParser) -> None:
"""Add input/output arguments."""
io_group = parser.add_argument_group('Input/Output')
io_group.add_argument('--input-path', type=str,
help='Input file or directory path')
io_group.add_argument('--output-path', type=str, default='./output',
help='Output directory path')
io_group.add_argument('--weights-path', type=str, default='./weights/model.pt',
help='Model weights file path')
io_group.add_argument('--checkpoint-dir', type=str, default='./checkpoints',
help='Checkpoint directory path')
io_group.add_argument('--log-level', choices=['DEBUG', 'INFO', 'WARNING', 'ERROR'],
default='INFO', help='Logging level')
@staticmethod
def add_huggingface_args(parser: argparse.ArgumentParser) -> None:
"""Add HuggingFace integration arguments."""
hf_group = parser.add_argument_group('HuggingFace Integration')
hf_group.add_argument('--hf-repo', type=str,
help='HuggingFace repository ID')
hf_group.add_argument('--hf-token', type=str,
help='HuggingFace access token')
hf_group.add_argument('--private-repo', action='store_true',
help='Create private HuggingFace repository')
hf_group.add_argument('--auto-upload', action='store_true',
help='Automatically upload to HuggingFace after training')
@staticmethod
def add_diffusion_args(parser: argparse.ArgumentParser) -> None:
"""Add diffusion mode arguments."""
diff_group = parser.add_argument_group('Diffusion Mode')
diff_group.add_argument('--diffusion-mode', action='store_true',
help='Enable diffusion training mode')
diff_group.add_argument('--diffusion-steps', type=int, default=8,
help='Number of diffusion steps')
diff_group.add_argument('--noise-schedule', choices=['linear', 'cosine', 'exponential'],
default='linear', help='Noise schedule type')
diff_group.add_argument('--diffusion-curriculum', action='store_true',
help='Use curriculum learning for diffusion')
@classmethod
def create_standard_parser(cls,
description: str,
include_groups: Optional[list] = None) -> argparse.ArgumentParser:
"""Create a standardized argument parser with specified groups.
Args:
description: Parser description
include_groups: List of group names to include. If None, includes all.
Options: ['model', 'training', 'dataset', 'safety', 'optimization',
'distributed', 'io', 'huggingface', 'diffusion']
"""
parser = argparse.ArgumentParser(
description=description,
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
# Default groups to include if none specified
if include_groups is None:
include_groups = ['model', 'training', 'dataset', 'safety', 'io']
# Add requested argument groups
group_methods = {
'model': cls.add_model_args,
'training': cls.add_training_args,
'dataset': cls.add_dataset_args,
'safety': cls.add_safety_args,
'optimization': cls.add_optimization_args,
'distributed': cls.add_distributed_args,
'io': cls.add_io_args,
'huggingface': cls.add_huggingface_args,
'diffusion': cls.add_diffusion_args,
}
for group_name in include_groups:
if group_name in group_methods:
group_methods[group_name](parser)
# Add common flags
parser.add_argument('--verbose', '-v', action='store_true',
help='Enable verbose output')
parser.add_argument('--debug', action='store_true',
help='Enable debug mode')
parser.add_argument('--seed', type=int, default=42,
help='Random seed for reproducibility')
return parser
# Pre-configured parsers for common use cases
def create_training_parser() -> argparse.ArgumentParser:
"""Create parser for training scripts."""
return BitTransformerCLI.create_standard_parser(
"BitTransformerLM Training Script",
['model', 'training', 'dataset', 'safety', 'optimization', 'distributed', 'io', 'huggingface']
)
def create_inference_parser() -> argparse.ArgumentParser:
"""Create parser for inference scripts."""
return BitTransformerCLI.create_standard_parser(
"BitTransformerLM Inference Script",
['model', 'safety', 'io', 'diffusion']
)
def create_evaluation_parser() -> argparse.ArgumentParser:
"""Create parser for evaluation scripts."""
return BitTransformerCLI.create_standard_parser(
"BitTransformerLM Evaluation Script",
['model', 'dataset', 'safety', 'io']
)
def create_workflow_parser() -> argparse.ArgumentParser:
"""Create parser for workflow/pipeline scripts."""
return BitTransformerCLI.create_standard_parser(
"BitTransformerLM Workflow Script",
['model', 'training', 'dataset', 'safety', 'optimization', 'io', 'huggingface', 'diffusion']
)