DNN ROI Models

A collection of deep neural network models for region of interest (ROI) detection in LArTPC experiments, including ICARUS, ProtoDUNE-HD, ProtoDUNE-SP, and SBND.

β”œβ”€β”€ icarus
β”‚   └── moon-2025-08-25
β”‚       β”œβ”€β”€ plane0_rand.ts
β”‚       └── plane1_rand.ts
β”œβ”€β”€ pdhd
β”‚   β”œβ”€β”€ dikshant
β”‚   β”‚   β”œβ”€β”€ mobileunet_largedataset_fullimage.ts
β”‚   β”‚   β”œβ”€β”€ mobileunet_largedataset_rebin4.ts
β”‚   β”‚   β”œβ”€β”€ unet_largedataset_fullimage.ts
β”‚   β”‚   └── unet_largedataset_rebin4.ts
β”‚   └── hokyeong
β”‚       └── CP49_mobilenetv3.ts
β”œβ”€β”€ pdsp
β”‚   β”œβ”€β”€ pth-model # models in pytorch pickle format
β”‚   β”‚   β”œβ”€β”€ nestedunet-l23-cosmic500-e50.pth # input: loose, MP2, MP3
β”‚   β”‚   β”œβ”€β”€ unet-l23-cosmic500-e50.pth # input: loose, MP2, MP3
β”‚   β”‚   └── unet-lt-cosmic500-e50.pth # input: loose, tight
β”‚   β”œβ”€β”€ ts-model-1.3 # TorchScript model saved using PyTorch 1.3
β”‚   β”‚   β”œβ”€β”€ nestedunet-l23-cosmic500-e50.ts
β”‚   β”‚   β”œβ”€β”€ unet-l23-cosmic500-e50.ts
β”‚   β”‚   └── unet-lt-cosmic500-e50.ts
β”‚   └── ts-model-2.3 # TorchScript model saved using PyTorch 2.3
β”‚       β”œβ”€β”€ nestedunet-l23-cosmic500-e50.ts
β”‚       β”œβ”€β”€ unet-l23-cosmic500-e50.ts
β”‚       └── unet-lt-cosmic500-e50.ts
β”œβ”€β”€ README.md
└── sbnd
    └── sbnd_data-v01_34_00
        β”œβ”€β”€ plane0.ts
        └── plane1.ts
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Evaluation results