metadata
language: en
license: lgpl-3.0
tags:
- pytorch
- torchscript
- image-segmentation
- particle-physics
- neutrino-detectors
- liquid-argon
datasets:
- custom
library_name: pytorch
pipeline_tag: image-segmentation
model-index:
- name: DNN ROI Models
results:
- task:
type: image-segmentation
name: Region of Interest Detection
metrics:
- type: iou
value: N/A
name: Intersection over Union
- type: dice
value: N/A
name: Dice Coefficient
models:
- icarus/moon-2025-08-25
- pdhd/dikshant/mobileunet
- pdhd/hokyeong/mobilenetv3
- pdsp/unet
- pdsp/nestedunet
- sbnd/sbnd_data-v01_34_00
DNN ROI Models
A collection of deep neural network models for region of interest (ROI) detection in LArTPC experiments, including ICARUS, ProtoDUNE-HD, ProtoDUNE-SP, and SBND.
βββ icarus
β βββ moon-2025-08-25
β βββ plane0_rand.ts
β βββ plane1_rand.ts
βββ pdhd
β βββ dikshant
β β βββ mobileunet_largedataset_fullimage.ts
β β βββ mobileunet_largedataset_rebin4.ts
β β βββ unet_largedataset_fullimage.ts
β β βββ unet_largedataset_rebin4.ts
β βββ hokyeong
β βββ CP49_mobilenetv3.ts
βββ pdsp
β βββ pth-model # models in pytorch pickle format
β β βββ nestedunet-l23-cosmic500-e50.pth # input: loose, MP2, MP3
β β βββ unet-l23-cosmic500-e50.pth # input: loose, MP2, MP3
β β βββ unet-lt-cosmic500-e50.pth # input: loose, tight
β βββ ts-model-1.3 # TorchScript model saved using PyTorch 1.3
β β βββ nestedunet-l23-cosmic500-e50.ts
β β βββ unet-l23-cosmic500-e50.ts
β β βββ unet-lt-cosmic500-e50.ts
β βββ ts-model-2.3 # TorchScript model saved using PyTorch 2.3
β βββ nestedunet-l23-cosmic500-e50.ts
β βββ unet-l23-cosmic500-e50.ts
β βββ unet-lt-cosmic500-e50.ts
βββ README.md
βββ sbnd
βββ sbnd_data-v01_34_00
βββ plane0.ts
βββ plane1.ts