Word2Li's picture
Upload model
0add802 verified
metadata
library_name: transformers
license: apache-2.0
base_model: mistralai/Mistral-7B-vp0.3
language: en
datasets:
  - Word2Li/MiddOptimized
tags:
  - llama-factory
  - full
pipeline_tag: text-generation
model-index:
  - name: Mistral-7B-v0.3-Middo-Alpaca-4o-mini
    results:
      - task:
          type: text-generation
        dataset:
          name: MMLU
          type: MMLU
        metrics:
          - name: weighted accuracy
            type: weighted accuracy
            value: 43.26
            verified: true
      - task:
          type: text-generation
        dataset:
          name: IFEval
          type: IFEval
        metrics:
          - name: overall accuracy
            type: overall accuracy
            value: 49.8
            verified: true
      - task:
          type: text-generation
        dataset:
          name: GSM8K
          type: GSM8K
        metrics:
          - name: accuracy
            type: accuracy
            value: 41.09
            verified: true
      - task:
          type: text-generation
        dataset:
          name: MATH
          type: MATH
        metrics:
          - name: accuracy
            type: accuracy
            value: 10.02
            verified: true
      - task:
          type: text-generation
        dataset:
          name: HumanEval
          type: HumanEval
        metrics:
          - name: humaneval_pass@1
            type: humaneval_pass@1
            value: 41.46
            verified: true
      - task:
          type: text-generation
        dataset:
          name: MBPP
          type: MBPP
        metrics:
          - name: score
            type: score
            value: 34.6
            verified: true
      - task:
          type: text-generation
        dataset:
          name: Hellaswag
          type: Hellaswag
        metrics:
          - name: accuracy
            type: accuracy
            value: 66.02
            verified: true
      - task:
          type: text-generation
        dataset:
          name: GPQA
          type: GPQA
        metrics:
          - name: accuracy
            type: accuracy
            value: 22.22
            verified: true
metrics:
  - accuracy

Mistral-7B-v0.3-Middo-WizardLM

Paper: Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning

Code: https://github.com/Word2VecT/Middo

Model description

This model is a fine-tuned version of mistralai/Mistral-7B-v0.3 on the MiddOptimzed/mistral_wizard dataset.

Training and evaluation data

Training data

Middo optimized WizardLMTeam/WizardLM_evol_instruct_70k on mistralai/Mistral-7B-v0.3.

Evaluation data

  • General
    • MMLU
    • IFEval
  • Math
    • GSM8K
    • MATH
  • Code
    • HumanEval
    • MBPP
  • Reasoning
    • Hellaswag
    • GPQA

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • total_eval_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 1.0

Training results

  • epoch: 1.0
  • total_flos: 4.871785990877872e+18
  • train_loss: 0.6260631282554998
  • train_runtime: 6928.3413
  • train_samples_per_second: 12.871
  • train_steps_per_second: 0.05

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1