LeanVAE / README.md
Yumic's picture
Add pipeline tag to model card (#1)
f30a30d verified
---
license: mit
pipeline_tag: image-to-image
---
<h2 align="center"> <a href="https://arxiv.org/abs/2503.14325">LeanVAE: An Ultra-Efficient Reconstruction VAE for Video Diffusion Models</a></h2>
https://github.com/user-attachments/assets/a2a4814a-192b-4cc4-b1a3-d612caa1d872
We present **LeanVAE**, a lightweight Video VAE designed for ultra-efficient video compression and scalable generation in Latent Video Diffusion Models (LVDMs).
- **Lightweight & Efficient**: Only **40M parameters**, significantly reducing computational overhead πŸ“‰
- **Optimized for High-Resolution Videos**: Encodes and decodes a **17-frame 1080p video** in **3 seconds** using only **15GB of GPU memory** *(without tiling inference)* 🎯
- **State-of-the-Art Video Reconstruction**: Competes with leading Video VAEs πŸ†
- **Versatile**: Supports both **images and videos**, preserving **causality in latent space** πŸ“½οΈ
- **Evidenced by Diffusion Model**: Enhances visual quality in video generation ✨
---
## πŸ› οΈ **Installation**
Clone the repository and install dependencies:
```
git clone https://github.com/westlake-repl/LeanVAE
cd LeanVAE
pip install -r requirements.txt
```
---
## 🎯 **Quick Start**
**Train LeanVAE**
```bash
bash scripts/train.sh
```
**Run Video Reconstruction**
```bash
bash scripts/inference.sh
```
**Evaluate Reconstruction Quality**
```bash
bash scripts/eval.sh
```
---
## πŸ“œ **Pretrained Models**
### Video VAE Model:
| Model | PSNR ⬆️ | LPIPS ⬇️ | Params πŸ“¦ | TFLOPs ⚑ | Checkpoint πŸ“₯ |
| ---------------- | ------ | ------- | -------- | -------- | ----------------------------------- |
| **LeanVAE-4ch** | 26.04 | 0.0899 | 39.8M | 0.203 | [LeanVAE-chn4.ckpt](https://huggingface.co/Yumic/LeanVAE/resolve/main/LeanVAE-dim4.ckpt?download=true) |
| **LeanVAE-16ch** | 30.15 | 0.0461 | 39.8M | 0.203 | [LeanVAE-chn16.ckpt](https://huggingface.co/Yumic/LeanVAE/resolve/main/LeanVAE-dim16.ckpt?download=true) |
### Latte Model:
The code and pretrained weights for video generation will be released soon. Stay tuned!
| Model | Dataset | FVD ⬇️ | Checkpoint πŸ“₯ |
| ---------- | ---------- | ---------- | ----------- |
| Latte + LeanVAE-chn4 | SkyTimelapse |49.59 | sky-chn4.ckpt |
| Latte + LeanVAE-chn4 | UCF101 |164.45 | ucf-chn4.ckpt |
| Latte + LeanVAE-chn16 | SkyTimelapse |95.15 | sky-chn16.ckpt |
| Latte + LeanVAE-chn16 | UCF101 |175.33 | ucf-chn16.ckpt |
---
## πŸ”§ **Using LeanVAE in Your Project**
```python
from LeanVAE import LeanVAE
# Load pretrained model
model = LeanVAE.load_from_checkpoint("path/to/ckpt", strict=False)
# πŸ”„ Encode & Decode an Image
image, image_rec = model.inference(image)
# πŸ–ΌοΈ Encode an image β†’ Get latent :
latent = model.encode(image) # (B, C, H, W) β†’ (B, d, 1, H/8, W/8), where d=4 or 16
# πŸ–ΌοΈ Decode latent representation β†’ Reconstruct image
image = model.decode(latent, is_image=True) # (B, d, 1, H/8, W/8) β†’ (B, C, H, W)
# πŸ”„ Encode & Decode a Video
video, video_rec = model.inference(video) ## Frame count must be 4n+1 (e.g., 5, 9, 13, 17...)
# 🎞️ Encode Video β†’ Get Latent Space
latent = model.encode(video) # (B, C, T+1, H, W) β†’ (B, d, T/4+1, H/8, W/8), where d=4 or 16
# 🎞️ Decode Latent β†’ Reconstruct Video
video = model.decode(latent) # (B, d, T/4+1, H/8, W/8) β†’ (B, C, T+1, H, W)
# ⚑ Enable **Temporal Tiling Inference** for Long Videos
model.set_tile_inference(True)
model.chunksize_enc = 5
model.chunksize_dec = 5
```
---
## πŸ“‚ **Preparing Data for Training**
To train LeanVAE, you need to create metadata files listing the video paths, grouped by resolution. Each file contains paths to videos of the same resolution.
```
πŸ“‚ data_list
β”œβ”€β”€ πŸ“„ 96x128.txt πŸ“œ # Contains paths to all 96x128 videos
β”‚ β”œβ”€β”€ /path/to/video_1.mp4
β”‚ β”œβ”€β”€ /path/to/video_2.mp4
β”‚ β”œβ”€β”€ ...
β”œβ”€β”€ πŸ“„ 256x256.txt πŸ“œ # Contains paths to all 256Γ—256 videos
β”‚ β”œβ”€β”€ /path/to/video_3.mp4
β”‚ β”œβ”€β”€ /path/to/video_4.mp4
β”‚ β”œβ”€β”€ ...
β”œβ”€β”€ πŸ“„ 352x288.txt πŸ“œ # Contains paths to all 352x288 videos
β”‚ β”œβ”€β”€ /path/to/video_5.mp4
β”‚ β”œβ”€β”€ /path/to/video_6.mp4
β”‚ β”œβ”€β”€ ...
```
πŸ“Œ Each text file lists video paths corresponding to a specific resolution. Set `args.train_datalist` to the folder containing these files.
---
## πŸ“œ **License**
This project is released under the **MIT License**. See the `LICENSE` file for details.
## πŸ”₯ **Why Choose LeanVAE?**
LeanVAE is **fast, lightweight and powerful**, enabling high-quality video compression and generation with minimal computational cost.
If you find this work useful, consider **starring ⭐ the repository** and citing our paper!
---
## πŸ“ **Cite Us**
```bibtex
@misc{cheng2025leanvaeultraefficientreconstructionvae,
title={LeanVAE: An Ultra-Efficient Reconstruction VAE for Video Diffusion Models},
author={Yu Cheng and Fajie Yuan},
year={2025},
eprint={2503.14325},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2503.14325},
}
```
---
## πŸ‘ **Acknowledgement**
Our work benefits from the contributions of several open-source projects, including [OmniTokenizer](https://github.com/FoundationVision/OmniTokenizer), [Open-Sora-Plan](https://github.com/PKU-YuanGroup/Open-Sora-Plan), [VidTok](https://github.com/microsoft/VidTok), and [Latte](https://github.com/Vchitect/Latte). We sincerely appreciate their efforts in advancing research and open-source collaboration!