Zelyanoth's picture
End of training
6ae9460 verified
metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - generator
metrics:
  - wer
model-index:
  - name: wav2vec2-bert-swahili-noise
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: generator
          type: generator
          config: default
          split: train
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.2959163543105149

wav2vec2-bert-swahili-noise

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5771
  • Wer: 0.2959

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 38
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 900

Training results

Training Loss Epoch Step Validation Loss Wer
3.142 0.0817 100 3.0798 0.9999
1.9368 0.1634 200 1.4137 0.9886
0.9455 0.2451 300 0.7745 0.4115
0.8236 0.3268 400 0.6644 0.3485
0.7723 0.4085 500 0.6475 0.3313
0.7603 0.4902 600 0.6082 0.3097
0.6848 0.5719 700 0.5972 0.3072
0.683 0.6536 800 0.5762 0.2986
0.6967 0.7353 900 0.5771 0.2959

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.2