|
--- |
|
base_model: |
|
- hubertsiuzdak/snac_24khz |
|
--- |
|
SNAC in safetensors format. |
|
|
|
```py |
|
import json |
|
from pathlib import Path |
|
|
|
import safetensors.torch |
|
import torch |
|
import torchaudio |
|
from snac import SNAC |
|
|
|
config = json.loads(Path("config.json").read_text(encoding="utf-8")) |
|
model = SNAC(**config) |
|
state_dict = safetensors.torch.load_file("model.safetensors") |
|
model.load_state_dict(state_dict) |
|
model.cuda().eval() |
|
|
|
input, sr = torchaudio.load("input.wav") |
|
input = torchaudio.functional.resample(input, sr, model.sampling_rate) |
|
input = input.cuda().unsqueeze(0) |
|
|
|
with torch.inference_mode(): |
|
codes = model.encode(input) |
|
output = model.decode(codes) |
|
|
|
output = output.cpu().squeeze(0) |
|
torchaudio.save("output.wav", output, model.sampling_rate) |
|
``` |