metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:713657
- loss:MultipleNegativesRankingLoss
base_model: TechWolf/ConTeXT-Skill-Extraction-base
widget:
- source_sentence: >-
Successfully gather data from diverse sources, ensuring data integrity and
accuracy.
sentences:
- gather data
- set up basic recording
- use global distribution system
- source_sentence: Learn to mix paints efficiently and effectively in this hands-on workshop.
sentences:
- design optical prototypes
- manage production of footwear or leather goods
- prepare colour mixtures
- source_sentence: >-
Developed and implemented quality control measures for pre-stitching
processes and techniques for footwear and leather goods.
sentences:
- operate heavy construction machinery without supervision
- pre-stitching processes and techniques for footwear and leather goods
- deburring machine parts
- source_sentence: >-
Improved efficiency in preparing fruits and vegetables for pre-processing
by implementing optimized workflows.
sentences:
- think proactively
- recommend orthopedic goods to customers depending on their condition
- prepare fruits and vegetables for pre-processing
- source_sentence: >-
Skilled in mixing construction grouts while adhering to strict
contamination control measures.
sentences:
- oversee logistics of finished products
- think creatively
- mix construction grouts
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer based on TechWolf/ConTeXT-Skill-Extraction-base
This is a sentence-transformers model finetuned from TechWolf/ConTeXT-Skill-Extraction-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: TechWolf/ConTeXT-Skill-Extraction-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Skilled in mixing construction grouts while adhering to strict contamination control measures.',
'mix construction grouts',
'oversee logistics of finished products',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 713,657 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 7 tokens
- mean: 15.73 tokens
- max: 61 tokens
- min: 3 tokens
- mean: 6.17 tokens
- max: 16 tokens
- min: 1.0
- mean: 1.0
- max: 1.0
- Samples:
sentence_0 sentence_1 label Successfully provided stabilisation care in emergency situations, contributing to positive patient outcomes.
provide stabilisation care in emergency
1.0
This training program covers advanced methods to remove coating from delicate components.
remove coating
1.0
Utilized statistical modelling to analyse booking patterns and forecast future demand.
analyse booking patterns
1.0
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0112 | 500 | 0.276 |
0.0224 | 1000 | 0.2541 |
0.0336 | 1500 | 0.2507 |
0.0448 | 2000 | 0.2276 |
0.0560 | 2500 | 0.2356 |
0.0673 | 3000 | 0.2153 |
0.0785 | 3500 | 0.2166 |
0.0897 | 4000 | 0.2108 |
0.1009 | 4500 | 0.2011 |
0.1121 | 5000 | 0.2098 |
0.1233 | 5500 | 0.2018 |
0.1345 | 6000 | 0.1879 |
0.1457 | 6500 | 0.1954 |
0.1569 | 7000 | 0.1927 |
0.1681 | 7500 | 0.1983 |
0.1794 | 8000 | 0.1833 |
0.1906 | 8500 | 0.1893 |
0.2018 | 9000 | 0.1992 |
0.2130 | 9500 | 0.1838 |
0.2242 | 10000 | 0.1713 |
0.2354 | 10500 | 0.1839 |
0.2466 | 11000 | 0.1727 |
0.2578 | 11500 | 0.1777 |
0.2690 | 12000 | 0.1691 |
0.2802 | 12500 | 0.1777 |
0.2915 | 13000 | 0.1627 |
0.3027 | 13500 | 0.1647 |
0.3139 | 14000 | 0.1627 |
0.3251 | 14500 | 0.1546 |
0.3363 | 15000 | 0.1689 |
0.3475 | 15500 | 0.1462 |
0.3587 | 16000 | 0.1492 |
0.3699 | 16500 | 0.158 |
0.3811 | 17000 | 0.1537 |
0.3923 | 17500 | 0.1597 |
0.4036 | 18000 | 0.1567 |
0.4148 | 18500 | 0.1607 |
0.4260 | 19000 | 0.1629 |
0.4372 | 19500 | 0.1418 |
0.4484 | 20000 | 0.1606 |
0.4596 | 20500 | 0.1537 |
0.4708 | 21000 | 0.1463 |
0.4820 | 21500 | 0.1372 |
0.4932 | 22000 | 0.1466 |
0.5044 | 22500 | 0.1349 |
0.5156 | 23000 | 0.1586 |
0.5269 | 23500 | 0.1365 |
0.5381 | 24000 | 0.1321 |
0.5493 | 24500 | 0.1549 |
0.5605 | 25000 | 0.1399 |
0.5717 | 25500 | 0.1283 |
0.5829 | 26000 | 0.1423 |
0.5941 | 26500 | 0.1355 |
0.6053 | 27000 | 0.1443 |
0.6165 | 27500 | 0.1417 |
0.6277 | 28000 | 0.1452 |
0.6390 | 28500 | 0.1395 |
0.6502 | 29000 | 0.1422 |
0.6614 | 29500 | 0.1262 |
0.6726 | 30000 | 0.1289 |
0.6838 | 30500 | 0.1363 |
0.6950 | 31000 | 0.1372 |
0.7062 | 31500 | 0.1272 |
0.7174 | 32000 | 0.1309 |
0.7286 | 32500 | 0.1291 |
0.7398 | 33000 | 0.1297 |
0.7511 | 33500 | 0.1226 |
0.7623 | 34000 | 0.1311 |
0.7735 | 34500 | 0.1201 |
0.7847 | 35000 | 0.1363 |
0.7959 | 35500 | 0.1306 |
0.8071 | 36000 | 0.1223 |
0.8183 | 36500 | 0.1173 |
0.8295 | 37000 | 0.1242 |
0.8407 | 37500 | 0.125 |
0.8519 | 38000 | 0.1384 |
0.8632 | 38500 | 0.1196 |
0.8744 | 39000 | 0.1251 |
0.8856 | 39500 | 0.1201 |
0.8968 | 40000 | 0.1199 |
0.9080 | 40500 | 0.1298 |
0.9192 | 41000 | 0.1223 |
0.9304 | 41500 | 0.1335 |
0.9416 | 42000 | 0.1194 |
0.9528 | 42500 | 0.1124 |
0.9640 | 43000 | 0.1127 |
0.9752 | 43500 | 0.1126 |
0.9865 | 44000 | 0.1242 |
0.9977 | 44500 | 0.1241 |
1.0089 | 45000 | 0.1061 |
1.0201 | 45500 | 0.084 |
1.0313 | 46000 | 0.1004 |
1.0425 | 46500 | 0.0898 |
1.0537 | 47000 | 0.0921 |
1.0649 | 47500 | 0.097 |
1.0761 | 48000 | 0.0877 |
1.0873 | 48500 | 0.098 |
1.0986 | 49000 | 0.1078 |
1.1098 | 49500 | 0.0947 |
1.1210 | 50000 | 0.1051 |
1.1322 | 50500 | 0.0981 |
1.1434 | 51000 | 0.0965 |
1.1546 | 51500 | 0.0893 |
1.1658 | 52000 | 0.0969 |
1.1770 | 52500 | 0.097 |
1.1882 | 53000 | 0.1023 |
1.1994 | 53500 | 0.1036 |
1.2107 | 54000 | 0.0903 |
1.2219 | 54500 | 0.1 |
1.2331 | 55000 | 0.0949 |
1.2443 | 55500 | 0.0893 |
1.2555 | 56000 | 0.0966 |
1.2667 | 56500 | 0.094 |
1.2779 | 57000 | 0.0955 |
1.2891 | 57500 | 0.0917 |
1.3003 | 58000 | 0.084 |
1.3115 | 58500 | 0.0859 |
1.3228 | 59000 | 0.0888 |
1.3340 | 59500 | 0.0847 |
1.3452 | 60000 | 0.0846 |
1.3564 | 60500 | 0.0868 |
1.3676 | 61000 | 0.0904 |
1.3788 | 61500 | 0.0848 |
1.3900 | 62000 | 0.0929 |
1.4012 | 62500 | 0.0851 |
1.4124 | 63000 | 0.0989 |
1.4236 | 63500 | 0.0814 |
1.4348 | 64000 | 0.0881 |
1.4461 | 64500 | 0.0909 |
1.4573 | 65000 | 0.0951 |
1.4685 | 65500 | 0.0856 |
1.4797 | 66000 | 0.0914 |
1.4909 | 66500 | 0.0932 |
1.5021 | 67000 | 0.0855 |
1.5133 | 67500 | 0.09 |
1.5245 | 68000 | 0.0801 |
1.5357 | 68500 | 0.087 |
1.5469 | 69000 | 0.0866 |
1.5582 | 69500 | 0.0867 |
1.5694 | 70000 | 0.0959 |
1.5806 | 70500 | 0.0922 |
1.5918 | 71000 | 0.0898 |
1.6030 | 71500 | 0.0823 |
1.6142 | 72000 | 0.088 |
1.6254 | 72500 | 0.0832 |
1.6366 | 73000 | 0.0985 |
1.6478 | 73500 | 0.0944 |
1.6590 | 74000 | 0.0931 |
1.6703 | 74500 | 0.0808 |
1.6815 | 75000 | 0.0877 |
1.6927 | 75500 | 0.0746 |
1.7039 | 76000 | 0.0842 |
1.7151 | 76500 | 0.088 |
1.7263 | 77000 | 0.0792 |
1.7375 | 77500 | 0.0718 |
1.7487 | 78000 | 0.0941 |
1.7599 | 78500 | 0.0843 |
1.7711 | 79000 | 0.0835 |
1.7824 | 79500 | 0.0878 |
1.7936 | 80000 | 0.0771 |
1.8048 | 80500 | 0.0829 |
1.8160 | 81000 | 0.086 |
1.8272 | 81500 | 0.0802 |
1.8384 | 82000 | 0.0901 |
1.8496 | 82500 | 0.0859 |
1.8608 | 83000 | 0.0871 |
1.8720 | 83500 | 0.0787 |
1.8832 | 84000 | 0.0894 |
1.8944 | 84500 | 0.0895 |
1.9057 | 85000 | 0.0912 |
1.9169 | 85500 | 0.0795 |
1.9281 | 86000 | 0.0775 |
1.9393 | 86500 | 0.0693 |
1.9505 | 87000 | 0.0811 |
1.9617 | 87500 | 0.076 |
1.9729 | 88000 | 0.085 |
1.9841 | 88500 | 0.0904 |
1.9953 | 89000 | 0.087 |
2.0065 | 89500 | 0.061 |
2.0178 | 90000 | 0.0628 |
2.0290 | 90500 | 0.0721 |
2.0402 | 91000 | 0.0694 |
2.0514 | 91500 | 0.0618 |
2.0626 | 92000 | 0.0598 |
2.0738 | 92500 | 0.0701 |
2.0850 | 93000 | 0.0724 |
2.0962 | 93500 | 0.0623 |
2.1074 | 94000 | 0.0647 |
2.1186 | 94500 | 0.0643 |
2.1299 | 95000 | 0.066 |
2.1411 | 95500 | 0.0653 |
2.1523 | 96000 | 0.0648 |
2.1635 | 96500 | 0.0616 |
2.1747 | 97000 | 0.0661 |
2.1859 | 97500 | 0.0678 |
2.1971 | 98000 | 0.0621 |
2.2083 | 98500 | 0.0699 |
2.2195 | 99000 | 0.0631 |
2.2307 | 99500 | 0.0701 |
2.2420 | 100000 | 0.0663 |
2.2532 | 100500 | 0.0559 |
2.2644 | 101000 | 0.0667 |
2.2756 | 101500 | 0.0695 |
2.2868 | 102000 | 0.0655 |
2.2980 | 102500 | 0.0668 |
2.3092 | 103000 | 0.0661 |
2.3204 | 103500 | 0.0638 |
2.3316 | 104000 | 0.0686 |
2.3428 | 104500 | 0.0628 |
2.3540 | 105000 | 0.0649 |
2.3653 | 105500 | 0.0603 |
2.3765 | 106000 | 0.064 |
2.3877 | 106500 | 0.0651 |
2.3989 | 107000 | 0.0589 |
2.4101 | 107500 | 0.0621 |
2.4213 | 108000 | 0.061 |
2.4325 | 108500 | 0.068 |
2.4437 | 109000 | 0.0545 |
2.4549 | 109500 | 0.0691 |
2.4661 | 110000 | 0.0614 |
2.4774 | 110500 | 0.0661 |
2.4886 | 111000 | 0.0701 |
2.4998 | 111500 | 0.0549 |
2.5110 | 112000 | 0.0676 |
2.5222 | 112500 | 0.0599 |
2.5334 | 113000 | 0.0605 |
2.5446 | 113500 | 0.0671 |
2.5558 | 114000 | 0.0681 |
2.5670 | 114500 | 0.063 |
2.5782 | 115000 | 0.0586 |
2.5895 | 115500 | 0.0629 |
2.6007 | 116000 | 0.0586 |
2.6119 | 116500 | 0.0668 |
2.6231 | 117000 | 0.0606 |
2.6343 | 117500 | 0.0521 |
2.6455 | 118000 | 0.0619 |
2.6567 | 118500 | 0.065 |
2.6679 | 119000 | 0.052 |
2.6791 | 119500 | 0.0628 |
2.6903 | 120000 | 0.0642 |
2.7016 | 120500 | 0.0614 |
2.7128 | 121000 | 0.0663 |
2.7240 | 121500 | 0.0569 |
2.7352 | 122000 | 0.0648 |
2.7464 | 122500 | 0.0616 |
2.7576 | 123000 | 0.0536 |
2.7688 | 123500 | 0.0669 |
2.7800 | 124000 | 0.0612 |
2.7912 | 124500 | 0.0555 |
2.8024 | 125000 | 0.059 |
2.8136 | 125500 | 0.0549 |
2.8249 | 126000 | 0.0563 |
2.8361 | 126500 | 0.0616 |
2.8473 | 127000 | 0.06 |
2.8585 | 127500 | 0.0606 |
2.8697 | 128000 | 0.063 |
2.8809 | 128500 | 0.0572 |
2.8921 | 129000 | 0.0697 |
2.9033 | 129500 | 0.0561 |
2.9145 | 130000 | 0.065 |
2.9257 | 130500 | 0.0525 |
2.9370 | 131000 | 0.0597 |
2.9482 | 131500 | 0.0604 |
2.9594 | 132000 | 0.0534 |
2.9706 | 132500 | 0.0553 |
2.9818 | 133000 | 0.0593 |
2.9930 | 133500 | 0.0554 |
Framework Versions
- Python: 3.12.6
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.5.1
- Datasets: 3.4.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}