adriansanz's picture
Add new SentenceTransformer model.
6a178d5 verified
---
base_model: BAAI/bge-m3
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5520
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Pagar un rebut o una liquidació pendent de pagament
sentences:
- Què és el tràmit per pagar un rebut o liquidació?
- Quin és el tràmit que permet la inscripció d'una entitat o associació?
- Quin és el límit de temps per a la instal·lació de tanques provisionals?
- source_sentence: Mitjançant decret de data 11/10/2022 núm. 202204494 s'inicia el
procés de concurrència competitiva per accedir a les parades vacants del mercat
de les Fonts.
sentences:
- Quin és el mercat on es va iniciar el procés de concurrència competitiva per accedir
a les parades vacants?
- Puc sol·licitar un certificat històric d'empadronament per a una persona que ja
no viu al municipi?
- Necessito obtenir un duplicat del títol de dret funerari perquè he perdut l'original
- source_sentence: Comunicar les dades per realitzar la notificació electrònica de
tots els procediments en què l’obligat legal sigui titular o part implicada, i
hagi de ser notificat o notificada.
sentences:
- Quin és el paper de l'Ajuntament en la inspecció de les condicions específiques?
- Quin és el tràmit relacionat amb la targeta ciutadana de serveis?
- Qui és el titular o part implicada en els procediments?
- source_sentence: Aquest tràmit permet sol·licitar l'informe municipal sobre la integració
social de persones estrangeres.
sentences:
- Puc canviar la concessió del meu dret funerari per una raó específica?
- Quin és el procediment per a obtenir l'informe d'inserció social?
- Quin és el propòsit de la formació en higiene alimentària
- source_sentence: Permet tramitar la baixa de les activitats esportives municipals.
sentences:
- Quin és el procés per a donar de baixa una activitat esportiva?
- On es pot recollir els dorsals el dia de la cursa?
- Quin és el benefici fiscal que es pot obtenir?
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
- type: cosine_accuracy@1
value: 0.1
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.22608695652173913
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.30434782608695654
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.4956521739130435
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0753623188405797
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.060869565217391314
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04956521739130433
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.22608695652173913
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.30434782608695654
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.4956521739130435
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2644535096144644
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.19486714975845426
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.21422014718167715
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.1
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.21304347826086956
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.49130434782608695
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07101449275362319
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06000000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04913043478260868
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.21304347826086956
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.49130434782608695
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2611989525147102
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.19224465148378198
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.21168860407432996
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.09565217391304348
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.25217391304347825
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3217391304347826
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5043478260869565
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.09565217391304348
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.08405797101449275
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06434782608695652
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05043478260869564
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.09565217391304348
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.25217391304347825
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3217391304347826
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5043478260869565
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2736727362077943
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.20330400276052454
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2225493022129085
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.09130434782608696
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.24347826086956523
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.32608695652173914
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.4782608695652174
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.09130434782608696
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.08115942028985507
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06521739130434782
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04782608695652173
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.09130434782608696
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.24347826086956523
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.32608695652173914
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.4782608695652174
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.25842339032219125
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.19112146307798494
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.21262325852877148
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.09565217391304348
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2217391304347826
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.32608695652173914
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5130434782608696
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.09565217391304348
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07391304347826087
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06521739130434782
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05130434782608694
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.09565217391304348
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2217391304347826
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.32608695652173914
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5130434782608696
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2703816814799584
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.1968685300207041
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.21575875323163748
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.10434782608695652
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.23478260869565218
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3217391304347826
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.49130434782608695
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.10434782608695652
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0782608695652174
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06434782608695652
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.049130434782608694
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.10434782608695652
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.23478260869565218
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3217391304347826
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.49130434782608695
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.268671836286108
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.20097135955831624
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.22058427749634182
name: Cosine Map@100
---
# SentenceTransformer based on BAAI/bge-m3
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/sqv-v5-5ep")
# Run inference
sentences = [
'Permet tramitar la baixa de les activitats esportives municipals.',
'Quin és el procés per a donar de baixa una activitat esportiva?',
'Quin és el benefici fiscal que es pot obtenir?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_1024`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1 |
| cosine_accuracy@3 | 0.2261 |
| cosine_accuracy@5 | 0.3043 |
| cosine_accuracy@10 | 0.4957 |
| cosine_precision@1 | 0.1 |
| cosine_precision@3 | 0.0754 |
| cosine_precision@5 | 0.0609 |
| cosine_precision@10 | 0.0496 |
| cosine_recall@1 | 0.1 |
| cosine_recall@3 | 0.2261 |
| cosine_recall@5 | 0.3043 |
| cosine_recall@10 | 0.4957 |
| cosine_ndcg@10 | 0.2645 |
| cosine_mrr@10 | 0.1949 |
| **cosine_map@100** | **0.2142** |
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1 |
| cosine_accuracy@3 | 0.213 |
| cosine_accuracy@5 | 0.3 |
| cosine_accuracy@10 | 0.4913 |
| cosine_precision@1 | 0.1 |
| cosine_precision@3 | 0.071 |
| cosine_precision@5 | 0.06 |
| cosine_precision@10 | 0.0491 |
| cosine_recall@1 | 0.1 |
| cosine_recall@3 | 0.213 |
| cosine_recall@5 | 0.3 |
| cosine_recall@10 | 0.4913 |
| cosine_ndcg@10 | 0.2612 |
| cosine_mrr@10 | 0.1922 |
| **cosine_map@100** | **0.2117** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0957 |
| cosine_accuracy@3 | 0.2522 |
| cosine_accuracy@5 | 0.3217 |
| cosine_accuracy@10 | 0.5043 |
| cosine_precision@1 | 0.0957 |
| cosine_precision@3 | 0.0841 |
| cosine_precision@5 | 0.0643 |
| cosine_precision@10 | 0.0504 |
| cosine_recall@1 | 0.0957 |
| cosine_recall@3 | 0.2522 |
| cosine_recall@5 | 0.3217 |
| cosine_recall@10 | 0.5043 |
| cosine_ndcg@10 | 0.2737 |
| cosine_mrr@10 | 0.2033 |
| **cosine_map@100** | **0.2225** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0913 |
| cosine_accuracy@3 | 0.2435 |
| cosine_accuracy@5 | 0.3261 |
| cosine_accuracy@10 | 0.4783 |
| cosine_precision@1 | 0.0913 |
| cosine_precision@3 | 0.0812 |
| cosine_precision@5 | 0.0652 |
| cosine_precision@10 | 0.0478 |
| cosine_recall@1 | 0.0913 |
| cosine_recall@3 | 0.2435 |
| cosine_recall@5 | 0.3261 |
| cosine_recall@10 | 0.4783 |
| cosine_ndcg@10 | 0.2584 |
| cosine_mrr@10 | 0.1911 |
| **cosine_map@100** | **0.2126** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0957 |
| cosine_accuracy@3 | 0.2217 |
| cosine_accuracy@5 | 0.3261 |
| cosine_accuracy@10 | 0.513 |
| cosine_precision@1 | 0.0957 |
| cosine_precision@3 | 0.0739 |
| cosine_precision@5 | 0.0652 |
| cosine_precision@10 | 0.0513 |
| cosine_recall@1 | 0.0957 |
| cosine_recall@3 | 0.2217 |
| cosine_recall@5 | 0.3261 |
| cosine_recall@10 | 0.513 |
| cosine_ndcg@10 | 0.2704 |
| cosine_mrr@10 | 0.1969 |
| **cosine_map@100** | **0.2158** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1043 |
| cosine_accuracy@3 | 0.2348 |
| cosine_accuracy@5 | 0.3217 |
| cosine_accuracy@10 | 0.4913 |
| cosine_precision@1 | 0.1043 |
| cosine_precision@3 | 0.0783 |
| cosine_precision@5 | 0.0643 |
| cosine_precision@10 | 0.0491 |
| cosine_recall@1 | 0.1043 |
| cosine_recall@3 | 0.2348 |
| cosine_recall@5 | 0.3217 |
| cosine_recall@10 | 0.4913 |
| cosine_ndcg@10 | 0.2687 |
| cosine_mrr@10 | 0.201 |
| **cosine_map@100** | **0.2206** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 5,520 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 43.7 tokens</li><li>max: 117 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 20.51 tokens</li><li>max: 51 tokens</li></ul> |
* Samples:
| positive | anchor |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>L’Ajuntament vol crear un banc de recursos on recollir tots els oferiments de la població i que servirà per atendre les necessitats de les famílies refugiades acollides al poble.</code> | <code>Quin és el paper de l’Ajuntament en la integració de les persones refugiades acollides?</code> |
| <code>Aquest tipus d'actuació requereix la intervenció d'una persona tècnica competent que subscrigui el projecte o la documentació tècnica corresponent i que assumeixi la direcció facultativa de l'execució de les obres.</code> | <code>Quin és el requisit per a la intervenció d'una persona tècnica competent en les obres d'intervenció parcial interior en edificis amb elements catalogats?</code> |
| <code>Aquest títol, adreçat a persones empadronades a Sant Quirze del Vallès, es concedirà segons el nivell d’ingressos, la condició d’edat o de discapacitat, en base als criteris específics que recull l’ordenança reguladora del sistema de tarifació social del transport públic municipal en autobús a Sant Quirze del Vallès.</code> | <code>Quin és el benefici de la TBUS GRATUÏTA per a les persones majors?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.2
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:-------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.4638 | 10 | 4.122 | - | - | - | - | - | - |
| 0.9275 | 20 | 2.7131 | - | - | - | - | - | - |
| 0.9739 | 21 | - | 0.2085 | 0.1973 | 0.1884 | 0.2087 | 0.1886 | 0.2177 |
| 1.3913 | 30 | 1.6964 | - | - | - | - | - | - |
| 1.8551 | 40 | 1.2311 | - | - | - | - | - | - |
| 1.9942 | 43 | - | 0.2148 | 0.2135 | 0.2170 | 0.2351 | 0.2091 | 0.2386 |
| 2.3188 | 50 | 0.9216 | - | - | - | - | - | - |
| 2.7826 | 60 | 0.737 | - | - | - | - | - | - |
| 2.9681 | 64 | - | 0.2145 | 0.2058 | 0.2072 | 0.2277 | 0.2127 | 0.2085 |
| 3.2464 | 70 | 0.6678 | - | - | - | - | - | - |
| 3.7101 | 80 | 0.555 | - | - | - | - | - | - |
| 3.9884 | 86 | - | 0.2028 | 0.2154 | 0.2117 | 0.2331 | 0.2113 | 0.2028 |
| 4.1739 | 90 | 0.5542 | - | - | - | - | - | - |
| 4.6377 | 100 | 0.5058 | - | - | - | - | - | - |
| **4.8696** | **105** | **-** | **0.2142** | **0.2158** | **0.2126** | **0.2225** | **0.2206** | **0.2117** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.35.0.dev0
- Datasets: 3.0.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->