adriansanz's picture
Add new SentenceTransformer model.
62789bc verified
metadata
base_model: BAAI/bge-m3
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:2844
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      La unió d’aquests dos documents conforma l’Informe d’Avaluació de
      l’Edifici (IAE).
    sentences:
      - Quin és el requisit per a rebre els ajuts econòmics per a les empreses?
      - >-
        Quin és el resultat de la unió de la Inspecció Tècnica de l’Edifici
        (ITE) i dels certificats energètics?
      - >-
        Quin és el termini per sol·licitar la renovació del carnet de persona
        cuidadora?
  - source_sentence: >-
      La Inspecció Tècnica dels Edificis (ITE) permet identificar les
      oportunitats de millora de l'eficiència energètica i implementar mesures
      de rehabilitació.
    sentences:
      - >-
        Quin és el benefici de l'activitat del Viver dels Avis de Sitges per a
        la qualitat de vida?
      - Com puc saber si puc ser cuidador?
      - >-
        Quin és el paper de la Inspecció Tècnica dels Edificis (ITE) en la
        millora de l'eficiència energètica?
  - source_sentence: >-
      A les zones blaves els parquímetres i serveis de pagament reconeixen les
      matricules dels vehicles acreditats.
    sentences:
      - Quin és el paper de la mediació en una denúncia?
      - Quin és el paper de les persones físiques?
      - >-
        Quin és el procediment per estacionar a les zones blaves amb
        l'acreditació de resident?
  - source_sentence: >-
      Els establiments oberts al públic destinats a espectacles cinematogràfics.
      Els establiments oberts al públic destinats a espectacles públics i
      activitats recreatives musicals amb un aforament autoritzat fins a 150
      persones.
    sentences:
      - >-
        Quin és el resultat esperat després de la intervenció de l'Ajuntament en
        les denúncies sanitàries?
      - >-
        Quin és el requisit de superfície construïda per als restaurants
        musicals?
      - >-
        Quins establiments oberts al públic han de comunicar la seva obertura a
        l'Ajuntament?
  - source_sentence: >-
      El Decret 97/2002, de 5 de març, regula la concessió de la targeta
      d’aparcament per a persones amb disminució i altres mesures adreçades a
      facilitar el desplaçament de les persones amb mobilitat reduïda.
    sentences:
      - >-
        Quin és el benefici de la targeta d'aparcament per a les persones amb
        disminució?
      - Quin és el paper de la Junta de Govern Local?
      - Quin és l'organisme que emet el certificat de serveis prestats?
model-index:
  - name: SentenceTransformer based on BAAI/bge-m3
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 1024
          type: dim_1024
        metrics:
          - type: cosine_accuracy@1
            value: 0.11814345991561181
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.23277074542897327
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.3129395218002813
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.4644163150492264
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.11814345991561181
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.07759024847632442
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.06258790436005626
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.046441631504922636
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.11814345991561181
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.23277074542897327
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.3129395218002813
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.4644163150492264
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.26553370933458276
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.20527392672962277
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.22599508422976106
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.11575246132208157
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.2289732770745429
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.3112517580872011
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.46568213783403656
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.11575246132208157
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.07632442569151429
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.062250351617440226
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.04656821378340366
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.11575246132208157
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.2289732770745429
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.3112517580872011
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.46568213783403656
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.26414039995115557
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.20311873507021158
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.22355973027797246
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.11912798874824192
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.23277074542897327
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.31758087201125174
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.46582278481012657
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.11912798874824192
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.07759024847632444
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.06351617440225035
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.04658227848101265
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.11912798874824192
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.23277074542897327
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.31758087201125174
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.46582278481012657
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.26671990925029193
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.20635646194717913
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.22673055490318922
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.11533052039381153
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.22658227848101264
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.30857946554149085
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.45668073136427567
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.11533052039381153
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.07552742616033756
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.06171589310829817
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.04566807313642757
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.11533052039381153
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.22658227848101264
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.30857946554149085
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.45668073136427567
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.26044811042246035
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.20098218471636187
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.22169039893772347
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.11181434599156118
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.22334739803094233
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.30253164556962026
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.45288326300984527
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.11181434599156118
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.07444913267698076
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.06050632911392405
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.045288326300984526
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.11181434599156118
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.22334739803094233
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.30253164556962026
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.45288326300984527
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.2566428043422134
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.19724806331346384
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.21784479785600805
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.10689170182841069
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.21251758087201125
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.28846694796061884
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.42967651195499296
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.10689170182841069
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.07083919362400375
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.05769338959212378
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0429676511954993
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.10689170182841069
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.21251758087201125
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.28846694796061884
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.42967651195499296
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.2438421466584992
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.1875642957604982
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.2080904354707231
            name: Cosine Map@100

SentenceTransformer based on BAAI/bge-m3

This is a sentence-transformers model finetuned from BAAI/bge-m3 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-m3
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/ST-tramits-sitges-006-5ep")
# Run inference
sentences = [
    'El Decret 97/2002, de 5 de març, regula la concessió de la targeta d’aparcament per a persones amb disminució i altres mesures adreçades a facilitar el desplaçament de les persones amb mobilitat reduïda.',
    "Quin és el benefici de la targeta d'aparcament per a les persones amb disminució?",
    'Quin és el paper de la Junta de Govern Local?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.1181
cosine_accuracy@3 0.2328
cosine_accuracy@5 0.3129
cosine_accuracy@10 0.4644
cosine_precision@1 0.1181
cosine_precision@3 0.0776
cosine_precision@5 0.0626
cosine_precision@10 0.0464
cosine_recall@1 0.1181
cosine_recall@3 0.2328
cosine_recall@5 0.3129
cosine_recall@10 0.4644
cosine_ndcg@10 0.2655
cosine_mrr@10 0.2053
cosine_map@100 0.226

Information Retrieval

Metric Value
cosine_accuracy@1 0.1158
cosine_accuracy@3 0.229
cosine_accuracy@5 0.3113
cosine_accuracy@10 0.4657
cosine_precision@1 0.1158
cosine_precision@3 0.0763
cosine_precision@5 0.0623
cosine_precision@10 0.0466
cosine_recall@1 0.1158
cosine_recall@3 0.229
cosine_recall@5 0.3113
cosine_recall@10 0.4657
cosine_ndcg@10 0.2641
cosine_mrr@10 0.2031
cosine_map@100 0.2236

Information Retrieval

Metric Value
cosine_accuracy@1 0.1191
cosine_accuracy@3 0.2328
cosine_accuracy@5 0.3176
cosine_accuracy@10 0.4658
cosine_precision@1 0.1191
cosine_precision@3 0.0776
cosine_precision@5 0.0635
cosine_precision@10 0.0466
cosine_recall@1 0.1191
cosine_recall@3 0.2328
cosine_recall@5 0.3176
cosine_recall@10 0.4658
cosine_ndcg@10 0.2667
cosine_mrr@10 0.2064
cosine_map@100 0.2267

Information Retrieval

Metric Value
cosine_accuracy@1 0.1153
cosine_accuracy@3 0.2266
cosine_accuracy@5 0.3086
cosine_accuracy@10 0.4567
cosine_precision@1 0.1153
cosine_precision@3 0.0755
cosine_precision@5 0.0617
cosine_precision@10 0.0457
cosine_recall@1 0.1153
cosine_recall@3 0.2266
cosine_recall@5 0.3086
cosine_recall@10 0.4567
cosine_ndcg@10 0.2604
cosine_mrr@10 0.201
cosine_map@100 0.2217

Information Retrieval

Metric Value
cosine_accuracy@1 0.1118
cosine_accuracy@3 0.2233
cosine_accuracy@5 0.3025
cosine_accuracy@10 0.4529
cosine_precision@1 0.1118
cosine_precision@3 0.0744
cosine_precision@5 0.0605
cosine_precision@10 0.0453
cosine_recall@1 0.1118
cosine_recall@3 0.2233
cosine_recall@5 0.3025
cosine_recall@10 0.4529
cosine_ndcg@10 0.2566
cosine_mrr@10 0.1972
cosine_map@100 0.2178

Information Retrieval

Metric Value
cosine_accuracy@1 0.1069
cosine_accuracy@3 0.2125
cosine_accuracy@5 0.2885
cosine_accuracy@10 0.4297
cosine_precision@1 0.1069
cosine_precision@3 0.0708
cosine_precision@5 0.0577
cosine_precision@10 0.043
cosine_recall@1 0.1069
cosine_recall@3 0.2125
cosine_recall@5 0.2885
cosine_recall@10 0.4297
cosine_ndcg@10 0.2438
cosine_mrr@10 0.1876
cosine_map@100 0.2081

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 2,844 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 3 tokens
    • mean: 49.45 tokens
    • max: 148 tokens
    • min: 10 tokens
    • mean: 20.94 tokens
    • max: 45 tokens
  • Samples:
    positive anchor
    L'Ajuntament de Sitges atorga subvencions per a projectes i activitats d'interès públic o social que tinguin per finalitat les activitats esportives federades, escolars o populars desenvolupades per les entitats esportives i esportistes del municipi de Sitges. Quin és el benefici de les subvencions per a les entitats esportives?
    Per a poder ser beneficiari d'una subvenció per a un projecte o activitat cultural, les entitats o associacions culturals de Sitges han de tenir una seu social a la ciutat de Sitges i estar inscrites en el Registre d'Entitats de la Generalitat de Catalunya. Quin és el requisit per a poder ser beneficiari d'una subvenció per a un projecte o activitat cultural?
    La cessió entre tercers, només es contempla en el cas de sepultures de construcció particular que hagin estat donades d'alta amb una anterioritat de 10 anys a la data de sol·licitud de la cessió. Quin és el paper de la persona que, legalment hi tingui dret, en la cessió entre tercers?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            1024,
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.2
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.2
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_1024_cosine_map@100 dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.8989 10 3.2114 - - - - - -
0.9888 11 - 0.2144 0.2008 0.2070 0.2126 0.1842 0.2126
1.7978 20 1.5622 - - - - - -
1.9775 22 - 0.2179 0.2101 0.2169 0.2180 0.2012 0.2193
2.6966 30 0.7882 - - - - - -
2.9663 33 - 0.2239 0.2162 0.2220 0.2238 0.2070 0.2222
3.5955 40 0.4956 - - - - - -
3.9551 44 - 0.2270 0.2177 0.2231 0.2278 0.2084 0.2255
4.4944 50 0.392 - - - - - -
4.9438 55 - 0.226 0.2178 0.2217 0.2267 0.2081 0.2236
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.1
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.35.0.dev0
  • Datasets: 3.0.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}