adriansanz's picture
Add new SentenceTransformer model.
62789bc verified
---
base_model: BAAI/bge-m3
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2844
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: La unió d’aquests dos documents conforma l’Informe d’Avaluació
de l’Edifici (IAE).
sentences:
- Quin és el requisit per a rebre els ajuts econòmics per a les empreses?
- Quin és el resultat de la unió de la Inspecció Tècnica de l’Edifici (ITE) i dels
certificats energètics?
- Quin és el termini per sol·licitar la renovació del carnet de persona cuidadora?
- source_sentence: La Inspecció Tècnica dels Edificis (ITE) permet identificar les
oportunitats de millora de l'eficiència energètica i implementar mesures de rehabilitació.
sentences:
- Quin és el benefici de l'activitat del Viver dels Avis de Sitges per a la qualitat
de vida?
- Com puc saber si puc ser cuidador?
- Quin és el paper de la Inspecció Tècnica dels Edificis (ITE) en la millora de
l'eficiència energètica?
- source_sentence: A les zones blaves els parquímetres i serveis de pagament reconeixen
les matricules dels vehicles acreditats.
sentences:
- Quin és el paper de la mediació en una denúncia?
- Quin és el paper de les persones físiques?
- Quin és el procediment per estacionar a les zones blaves amb l'acreditació de
resident?
- source_sentence: Els establiments oberts al públic destinats a espectacles cinematogràfics.
Els establiments oberts al públic destinats a espectacles públics i activitats
recreatives musicals amb un aforament autoritzat fins a 150 persones.
sentences:
- Quin és el resultat esperat després de la intervenció de l'Ajuntament en les denúncies
sanitàries?
- Quin és el requisit de superfície construïda per als restaurants musicals?
- Quins establiments oberts al públic han de comunicar la seva obertura a l'Ajuntament?
- source_sentence: El Decret 97/2002, de 5 de març, regula la concessió de la targeta
d’aparcament per a persones amb disminució i altres mesures adreçades a facilitar
el desplaçament de les persones amb mobilitat reduïda.
sentences:
- Quin és el benefici de la targeta d'aparcament per a les persones amb disminució?
- Quin és el paper de la Junta de Govern Local?
- Quin és l'organisme que emet el certificat de serveis prestats?
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
- type: cosine_accuracy@1
value: 0.11814345991561181
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.23277074542897327
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3129395218002813
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.4644163150492264
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.11814345991561181
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07759024847632442
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06258790436005626
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.046441631504922636
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.11814345991561181
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.23277074542897327
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3129395218002813
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.4644163150492264
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.26553370933458276
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.20527392672962277
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.22599508422976106
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.11575246132208157
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2289732770745429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3112517580872011
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.46568213783403656
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.11575246132208157
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07632442569151429
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.062250351617440226
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04656821378340366
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.11575246132208157
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2289732770745429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3112517580872011
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.46568213783403656
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.26414039995115557
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.20311873507021158
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.22355973027797246
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.11912798874824192
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.23277074542897327
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.31758087201125174
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.46582278481012657
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.11912798874824192
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07759024847632444
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06351617440225035
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04658227848101265
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.11912798874824192
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.23277074542897327
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.31758087201125174
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.46582278481012657
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.26671990925029193
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.20635646194717913
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.22673055490318922
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.11533052039381153
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.22658227848101264
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.30857946554149085
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.45668073136427567
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.11533052039381153
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07552742616033756
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06171589310829817
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04566807313642757
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.11533052039381153
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.22658227848101264
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.30857946554149085
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.45668073136427567
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.26044811042246035
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.20098218471636187
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.22169039893772347
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.11181434599156118
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.22334739803094233
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.30253164556962026
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.45288326300984527
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.11181434599156118
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07444913267698076
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06050632911392405
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.045288326300984526
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.11181434599156118
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.22334739803094233
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.30253164556962026
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.45288326300984527
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2566428043422134
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.19724806331346384
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.21784479785600805
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.10689170182841069
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.21251758087201125
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.28846694796061884
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.42967651195499296
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.10689170182841069
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07083919362400375
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.05769338959212378
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0429676511954993
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.10689170182841069
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.21251758087201125
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.28846694796061884
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.42967651195499296
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2438421466584992
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.1875642957604982
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2080904354707231
name: Cosine Map@100
---
# SentenceTransformer based on BAAI/bge-m3
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/ST-tramits-sitges-006-5ep")
# Run inference
sentences = [
'El Decret 97/2002, de 5 de març, regula la concessió de la targeta d’aparcament per a persones amb disminució i altres mesures adreçades a facilitar el desplaçament de les persones amb mobilitat reduïda.',
"Quin és el benefici de la targeta d'aparcament per a les persones amb disminució?",
'Quin és el paper de la Junta de Govern Local?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_1024`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.1181 |
| cosine_accuracy@3 | 0.2328 |
| cosine_accuracy@5 | 0.3129 |
| cosine_accuracy@10 | 0.4644 |
| cosine_precision@1 | 0.1181 |
| cosine_precision@3 | 0.0776 |
| cosine_precision@5 | 0.0626 |
| cosine_precision@10 | 0.0464 |
| cosine_recall@1 | 0.1181 |
| cosine_recall@3 | 0.2328 |
| cosine_recall@5 | 0.3129 |
| cosine_recall@10 | 0.4644 |
| cosine_ndcg@10 | 0.2655 |
| cosine_mrr@10 | 0.2053 |
| **cosine_map@100** | **0.226** |
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1158 |
| cosine_accuracy@3 | 0.229 |
| cosine_accuracy@5 | 0.3113 |
| cosine_accuracy@10 | 0.4657 |
| cosine_precision@1 | 0.1158 |
| cosine_precision@3 | 0.0763 |
| cosine_precision@5 | 0.0623 |
| cosine_precision@10 | 0.0466 |
| cosine_recall@1 | 0.1158 |
| cosine_recall@3 | 0.229 |
| cosine_recall@5 | 0.3113 |
| cosine_recall@10 | 0.4657 |
| cosine_ndcg@10 | 0.2641 |
| cosine_mrr@10 | 0.2031 |
| **cosine_map@100** | **0.2236** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1191 |
| cosine_accuracy@3 | 0.2328 |
| cosine_accuracy@5 | 0.3176 |
| cosine_accuracy@10 | 0.4658 |
| cosine_precision@1 | 0.1191 |
| cosine_precision@3 | 0.0776 |
| cosine_precision@5 | 0.0635 |
| cosine_precision@10 | 0.0466 |
| cosine_recall@1 | 0.1191 |
| cosine_recall@3 | 0.2328 |
| cosine_recall@5 | 0.3176 |
| cosine_recall@10 | 0.4658 |
| cosine_ndcg@10 | 0.2667 |
| cosine_mrr@10 | 0.2064 |
| **cosine_map@100** | **0.2267** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1153 |
| cosine_accuracy@3 | 0.2266 |
| cosine_accuracy@5 | 0.3086 |
| cosine_accuracy@10 | 0.4567 |
| cosine_precision@1 | 0.1153 |
| cosine_precision@3 | 0.0755 |
| cosine_precision@5 | 0.0617 |
| cosine_precision@10 | 0.0457 |
| cosine_recall@1 | 0.1153 |
| cosine_recall@3 | 0.2266 |
| cosine_recall@5 | 0.3086 |
| cosine_recall@10 | 0.4567 |
| cosine_ndcg@10 | 0.2604 |
| cosine_mrr@10 | 0.201 |
| **cosine_map@100** | **0.2217** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1118 |
| cosine_accuracy@3 | 0.2233 |
| cosine_accuracy@5 | 0.3025 |
| cosine_accuracy@10 | 0.4529 |
| cosine_precision@1 | 0.1118 |
| cosine_precision@3 | 0.0744 |
| cosine_precision@5 | 0.0605 |
| cosine_precision@10 | 0.0453 |
| cosine_recall@1 | 0.1118 |
| cosine_recall@3 | 0.2233 |
| cosine_recall@5 | 0.3025 |
| cosine_recall@10 | 0.4529 |
| cosine_ndcg@10 | 0.2566 |
| cosine_mrr@10 | 0.1972 |
| **cosine_map@100** | **0.2178** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1069 |
| cosine_accuracy@3 | 0.2125 |
| cosine_accuracy@5 | 0.2885 |
| cosine_accuracy@10 | 0.4297 |
| cosine_precision@1 | 0.1069 |
| cosine_precision@3 | 0.0708 |
| cosine_precision@5 | 0.0577 |
| cosine_precision@10 | 0.043 |
| cosine_recall@1 | 0.1069 |
| cosine_recall@3 | 0.2125 |
| cosine_recall@5 | 0.2885 |
| cosine_recall@10 | 0.4297 |
| cosine_ndcg@10 | 0.2438 |
| cosine_mrr@10 | 0.1876 |
| **cosine_map@100** | **0.2081** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 2,844 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 49.45 tokens</li><li>max: 148 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 20.94 tokens</li><li>max: 45 tokens</li></ul> |
* Samples:
| positive | anchor |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------|
| <code>L'Ajuntament de Sitges atorga subvencions per a projectes i activitats d'interès públic o social que tinguin per finalitat les activitats esportives federades, escolars o populars desenvolupades per les entitats esportives i esportistes del municipi de Sitges.</code> | <code>Quin és el benefici de les subvencions per a les entitats esportives?</code> |
| <code>Per a poder ser beneficiari d'una subvenció per a un projecte o activitat cultural, les entitats o associacions culturals de Sitges han de tenir una seu social a la ciutat de Sitges i estar inscrites en el Registre d'Entitats de la Generalitat de Catalunya.</code> | <code>Quin és el requisit per a poder ser beneficiari d'una subvenció per a un projecte o activitat cultural?</code> |
| <code>La cessió entre tercers, només es contempla en el cas de sepultures de construcció particular que hagin estat donades d'alta amb una anterioritat de 10 anys a la data de sol·licitud de la cessió.</code> | <code>Quin és el paper de la persona que, legalment hi tingui dret, en la cessió entre tercers?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.2
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.8989 | 10 | 3.2114 | - | - | - | - | - | - |
| 0.9888 | 11 | - | 0.2144 | 0.2008 | 0.2070 | 0.2126 | 0.1842 | 0.2126 |
| 1.7978 | 20 | 1.5622 | - | - | - | - | - | - |
| 1.9775 | 22 | - | 0.2179 | 0.2101 | 0.2169 | 0.2180 | 0.2012 | 0.2193 |
| 2.6966 | 30 | 0.7882 | - | - | - | - | - | - |
| 2.9663 | 33 | - | 0.2239 | 0.2162 | 0.2220 | 0.2238 | 0.2070 | 0.2222 |
| 3.5955 | 40 | 0.4956 | - | - | - | - | - | - |
| 3.9551 | 44 | - | 0.2270 | 0.2177 | 0.2231 | 0.2278 | 0.2084 | 0.2255 |
| 4.4944 | 50 | 0.392 | - | - | - | - | - | - |
| **4.9438** | **55** | **-** | **0.226** | **0.2178** | **0.2217** | **0.2267** | **0.2081** | **0.2236** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.35.0.dev0
- Datasets: 3.0.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->