metadata
task_categories:
- audio-classification
language:
- de
tags:
- intent
- intent-classification
- audio-classification
- audio
base_model:
- facebook/wav2vec2-xls-r-300m
datasets:
- FBK-MT/Speech-MASSIVE
library_name: transformers
license: apache-2.0
wav2vec 2.0 XLS-R 128 (300m) fine-tuned on Speech-MASSIVE - de-DE
Speech-MASSIVE is a multilingual Spoken Language Understanding (SLU) dataset comprising the speech counterpart for a portion of the MASSIVE textual corpus. Speech-MASSIVE covers 12 languages. It includes spoken and written utterances and is annotated with 60 intents. The dataset is available on HuggingFace Hub.
This is the facebook/wav2vec2-xls-r-300m model fine-tuned on the de-DE language.
It achieves the following results on the test set:
- Accuracy: 0.681
- F1: 0.584
Usage
You can use the model directly in the following manner:
import torch
import librosa
from transformers import AutoModelForAudioClassification, AutoFeatureExtractor
## Load an audio file
audio_array, sr = librosa.load("path_to_audio.wav", sr=16000)
## Load model and feature extractor
model = AutoModelForAudioClassification.from_pretrained("alkiskoudounas/xls-r-128-speechmassive-de-DE")
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-xls-r-300m")
## Extract features
inputs = feature_extractor(audio_array.squeeze(), sampling_rate=feature_extractor.sampling_rate, padding=True, return_tensors="pt")
## Compute logits
logits = model(**inputs).logits
Framework versions
- Datasets 3.2.0
- Pytorch 2.1.2
- Tokenizers 0.20.3
- Transformers 4.45.2
BibTeX entry and citation info
@inproceedings{koudounas2025unlearning,
title={"Alexa, can you forget me?" Machine Unlearning Benchmark in Spoken Language Understanding},
author={Koudounas, Alkis and Savelli, Claudio and Giobergia, Flavio and Baralis, Elena},
booktitle={Proc. Interspeech 2025},
year={2025},
}