group2_non_all_zero / README.md
anismahmahi's picture
update model card README.md
1505bdc
|
raw
history blame
1.96 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: group2_non_all_zero
    results: []

group2_non_all_zero

This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3907
  • Precision: 0.0415
  • Recall: 0.086
  • F1: 0.0560
  • Accuracy: 0.9044

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 172 0.2512 0.0608 0.044 0.0510 0.9439
No log 2.0 344 0.2667 0.0355 0.048 0.0408 0.9194
0.4561 3.0 516 0.2883 0.0445 0.078 0.0566 0.9198
0.4561 4.0 688 0.3610 0.0379 0.092 0.0537 0.8968
0.4561 5.0 860 0.3840 0.0528 0.094 0.0676 0.9095
0.1508 6.0 1032 0.3907 0.0415 0.086 0.0560 0.9044

Framework versions

  • Transformers 4.30.0
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.0
  • Tokenizers 0.13.3